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Abstract 

The classical heat equation is a partial differential equation (PDE) which is utilized 
for describing heat conduction in solids considering continuous media; the heat 
equation is stated taking into account the principle of energy conservation and 
Fourier’s law. Thermal networks are usually used for studying heat transfer 
processes by considering a thermal-electrical analogy, as it is noted by Carslaw 
and Jaeger, despite the fact that well-known discrepancies between heat and 
electricity exist. On the other hand, numerical prediction of thermal problems 
using finite elements has been developed significantly and numerical codes like 
ANSYS fluent or COMSOL are widely used to solve heat conduction in 
combination with fluid mechanical problems. The aim of this paper is to show that 
thermal networks may be deduced from the heat equation without the thermal-
electrical analogy by using finite elements. For this purpose, the heat equation is 
put in its weak form and, by using the finite element method as introduced by 
Gilbert Strang, the weak form of the heat equation is expressed as a system of 
differential and algebraic equations (DAE), i.e. as a thermal network. 
Keywords: heat equation, thermal networks, finite elements, model 
transformations. 

1 Introduction 

The classical heat equation, which is a deterministic parabolic partial differential 
equation (PDE), is usually employed for modelling heat conduction in solids. It 
was introduced by Fourier in his celebrated “Théorie Analytique de la Chaleur” 
for studying heat diffusion from a continuous standpoint [1, 2]. Furthermore, 
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Fourier developed analytical methods for solving the heat equation which are still 
employed [3, 4]. 
     On another hand, numerical methods became years later and they are mainly 
used for prediction of thermal problems, among them, finite elements have been 
developed significantly and numerical codes like ANSYS® fluent or COMSOL® 
are widely used to solve heat conduction in combination with fluid mechanical 
problems. The use of these software tools in computational fluid dynamics (CFD) 
is mainly focused on simulation problems, and parameter identification problems 
are not considered. Nonetheless, parameter identification is an important issue 
which may be also dealt with finite element techniques and this can be noted 
explicitly if thermal networks are deduced from the heat equation.   
     The deduction of thermal networks from the heat equation supposes to follow 
the inverse way that Fourier followed, i.e. to discretize the heat equation for 
solving it. Thermal networks usually appear considering the analogy with 
electrical networks [5–7], as noted by Carslaw and Jaeger [3]. Thus, it is important 
to highlight that the analogy between heat conduction and electricity started in the 
inverse way, i.e. Fourier’s law preceded Ohm’s law as noted within an historical 
review by Narasimhan [2]. This paper shows the deduction of thermal networks 
from the heat equation by using the finite element method [8, 9]. 

2 Transforming the heat equation into a thermal network 

The heat equation can be expressed as a system of linear differential and algebraic 
equations (DAE) using the Galerkin finite element method, as shown for systems 
in equilibrium by Strang [8, 9], and a system of DAE can be represented as a 
thermal network (Figure 1), as shown by Ghiaus [10], Naveros and Ghiaus [11] 
and Naveros et al. [12]. 
 

 

Figure 1: A thermal network which represent a system of DAE with one 
differential and two algebraic equations. 

     In Figure 1, ܾଵ	and	ܾସ are temperature sources which act as boundary 
conditions, ଵ݂	and ଷ݂ are heat rate sources which act as boundary conditions, 
,ଵߠ ,ଶߠ and	ߠଷ are temperatures at nodes, ܴଵ, ܴଶ, ܴଷ	and	ܴସ are thermal resistances 
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in branches from node to node, ݍଵ, ,ଶݍ  ,ସare heat rate fluxes over branchesݍ  and	ଷݍ
and ܥଶ is the thermal capacity at node ߠଶ. 
     Let the heat equation for a continuous isotropic non-homogeneous medium: 
 

ܿߩ
డఏ

డ௧
ൌ െ  ሺെߠߢሻ   (1)                                           

where ߩ ൌ ,ݔሺߩ ,ݕ ܿ ,ሻ is the volume densityݖ ൌ ܿሺݔ, ,ݕ  ሻ is the volume specificݖ
heat capacity, ߢ ൌ ,ݔሺߢ ,ݕ  ,ሻ is the thermal conductivity of the volumeݖ ൌ
,ݔሺ ,ݕ  ,ሻ is a function which includes heat rate sources supplied to the volumeݖ
and ߠ ൌ ,ݔሺߠ ,ݕ   .ሻ is the function of temperature distribution in the volumeݖ
     The heat equation, Eq. (1), may be expressed in weak form and the finite 
element method may be used for solving it. In three-dimensions, the weak form of 
the heat equation is: 

 

න ܿߩ
ߠ߲
ݐ߲
dܸݒ


ൌ න െ  ሺെߠߢሻݒdܸ


 න dܸݒ


 (2)

 

where the heat equation is integrated over the volume, ܸ, using a test function ݒ ൌ
,ݔሺݒ ,ݕ  .ሻݖ
     Firstly, the divergence and gradient operators may be developed considering 
Cartesian coordinates: 
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(3)

     This integral expression becomes a system of differential algebraic equations 
(DAE), and represented as a thermal network graphically. Next, the part 
corresponding to the ݔ-coordinate is used for detailing how obtaining the matrix 
form, the extension to three dimensions may be done considering a test function 
ݒ ൌ ሻݔሺݒ  ሻݕሺݒ   .ሻݖሺݒ
     For one dimension considering the total interval ݔ ∈ ሾ0,1ሿ, we obtain: 
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(4)

 

     Moreover, by considering the integration into a cube of volume: 

V= dxdydz ൌ ݄ଷ, the surface perpendicular to the x-coordinate will be, ܵ ൌ

 dydzௌ ൌ ݄ଶ, and Eq. (4) becomes: 
 

݄ଶ න ܿߩ
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 ݄ଶ න dxݒ

ଵ


 (5)

Heat Transfer XIV  35

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 106, © 2016 WIT Press



     Following, Eq. (5) will be put in matrix notation by using the finite element 
Galerkin method as explained by Strang [9]. For this purpose, a continuous 
piecewise linear approximation for building the trial functions	߮ሺݔሻ is used 
(Figure 3). Let ܫ: 0 ൌ ଵݔ ൏ ଶݔ ൏ ⋯ ൏ ேݔ ൌ 1 be a partition of interval ܫ ൌ ሺ0, 1ሻ 
into subintervals ܫ ൌ ሺݔ, ିଵሻ of length ݄ݔ ൌ ݔ െ  ିଵ; we will suppose for theݔ
sake of simplicity ݄ ൌ ݄. Let ܸ denote the set of continuous piecewise linear 
functions on ܫ that are one at ݔ ൌ 0	and	ݔ ൌ 1. ܸ is a finite dimensional vector 
space, ݀݅݉ ܸ ൌ ܰ, with a basis consisting of hat functions ሼ߮ሽୀଵ

ே : 
 

߮ሺݔሻ ൌ

ە
ۖ
۔

ۖ
ۓ

0, ݂݅ ݔ ∉ ሾݔିଵ, ,ାଵሿݔ
ݔ െ ିଵݔ
ݔ െ ିଵݔ

, ݂݅ ݔ ∈ ሾݔିଵ, ,ሿݔ

ାଵݔ െ ݔ
ାଵݔ െ ݔ

, ݂݅ ݔ ∈ ሾݔ, ;ାଵሿݔ

 (6)

 

     Using such trial functions, the temperature function may be defined as: 

ߠ ൌ ∑ ߠ
ே
ୀଵ ߮ሺݔሻ (7)

and the test function may be defined as a set of N functions at each space interval 
by: 

ݒ ൌ ߮ሺݔሻ		݆ ൌ 2,… ,ܰ െ 1; ଵݒ ൌ 0; ேݒ ൌ 0 (8)

     These test functions will coincide with hat functions except at interval extremes 
ଵݒ) ് ߮ଵ, ேݒ ് ߮ே). 
 

 

Figure 2: Trial hat functions and semi-hat functions at extremes. 

     The function of thermal conductivities may be also defined by parts: 
ሻݔሺߢ ൌ ߢ ݔ	ݎ݂ ∈ ሿݔିଵ, ,ሾݔ ݅ ൌ 1,… ,ܰ െ 1 (9)

     It needs to be noted that thermal conductivity does not need to be a continuous 
function but the heat flux and the temperature distribution. At interval junctions, 
the thermal conductivity may change without continuity since the space may be 
non-homogenous, for instance when there is a change of material [3, 9]. 
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     Next, we consider the integration by parts of the first term in the right-hand 
side of Eq. (5):  

݄ଶ න
d
dx
൬ߢ௫

dߠ
ݔ݀
൰

ଵ


ݔdݒ ൌ െ݄ଶ න ௫ߢ

dߠ
dx

dݒ
ݔ݀

ଵ


dݔ  ݄ଶ ߢ

dߠ
ݔ݀

ฬݒ


ଵ

 (10)

     The second term in the right-hand side becomes zero by choosing the test 
function ݒሺ0, ,ݕ ሻݖ ൌ 0 and ݒሺ1, ,ݕ ሻݖ ൌ 0; the first term in the right-hand side of 
Eq. (10) may be written as ܰ expressions (݆ ൌ 1,… ,ܰ) and each expression can 
be expanded in ܰ  terms (݅ ൌ 1,… ,ܰ) considering the previously proposed test and 
the trial functions (ݒ	, ߮): 

ݏ݊݅ݐܿ݊ݑ݂	݈ܽ݅ݎݐ	ܰ ሺ߮ሻ
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ଵ


																					⋮

								െ݄ଶ ൬
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ଵߠ  ⋯
d߮ே
dݔ

ே൰ߠ ൬
dݒே
dݔ

൰න ݔ݀ߢ
ଵ

 ۙ
ۖ
ۘ

ۖ
ۗ

ሻݒሺ	ݏ݊݅ݐܿ݊ݑ݂	ݐݏ݁ݐ	ܰ
 (11)

     This enables us to use matrix notation for rewriting expression (11) as ۹ીఝ, 
where ીఝ ൌ ሺߠଵ  ሻ்is the vector of temperatures representing state variablesߠ…
and temperature sources; and ۹ is the stiffness matrix, which is a sparse tridiagonal 
matrix (ܰ ൈ ܰ) with elements different to zero only on the diagonal and on the 
adjacent diagonals. Furthermore, this stiffness matrix will be symmetric and 
positive definite hence invertible.  
     In practice, for obtaining the stiffness matrix the test and trial functions, which 
are piece-wise functions, may be arranged as vectors and matrices. The total 
interval	ሾ0,1ሿ may be split into ܰ െ 1 subintervals, which may be supposed equal 
spaced with a length ݄, and each subinterval will represent a vector component. 
For instance, the derivatives of a set of trial functions, Eq. (6), considering ܰ ൌ 5, 
may be represented as five independent column vectors and arranged as a matrix 
(Figures 3–7 and Eqs (12)–(18)). 
     The derivative of the first trial function ሺ߮ଵᇱ ሻ (Figure 3), may be defined for 
each interval as: 

 T
h

0001
1

'1 φ  (12)

 

Figure 3: First trial function (semi-hat function) using four intervals of length h. 
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     The derivative of the second trial function ሺ߮ଶ
ᇱ ሻ considered in Figure 4 may be 

defined for each interval as 1/h, -1/h, 0 and 0 respectively: 

 T
h

0011
1

'2 φ  (13)

 

 

Figure 4: Second trial function (hat function) using four intervals of length h. 

     The derivative of the third trial function ሺ߮ଷ
ᇱ ሻ	considered in Figure 5 may be 

defined for each interval as 0, 1/h, -1/h and 0 respectively: 

 T
h

0110
1

'3 φ     (14) 

 

 

Figure 5: Third trial function (hat function) using four intervals of length h. 

     The derivative of the fourth trial function ሺ߮ସᇱ ሻ considered in Figure 6 may be 
defined for each interval as 0, 0, 1/h and -1/h respectively: 

 T
h

1100
1

'4 φ  

 
 (15) 
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Figure 6: Fourth trial function (hat function) using four intervals of length h. 

     The derivative of the fifth trial function ሺ߮ହ
ᇱ ሻ considered in Figure 7 may be 

defined for each interval as 0, 0, 0 and 1/h respectively: 

 (16)

 
																												 ߮ହ 					 

 
 
 
 
 

 
݄

Figure 7: Fifth trial function (semi-hat function) using four intervals of length 
h. 

     The trial functions may be arranged altogether as column vectors to form a 
difference matrix, ۯఝ: 
 































11000

01100

00110

00011

'''''

1

54321 φφφφφ

A
h

 
(17)

 
     On another hand, the test functions are equals to the trial functions except at 
interval extremes where they may be imposed to be zero for cancelling the second 
term on the right-hand side of Eq. (10). This second term is related to the boundary 
conditions used for solving the problem and it needs to be cancelled for obtaining 
an invertible stiffness matrix, which is similar to the use of boundary conditions 
after an analytical integration for obtaining the integration constants. The 
difference matrix, ۯ௩, obtained from test functions is: 
 

 T
h

1000
1

'5 φ
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(18)

     Thermal conductivities may be arranged in a diagonal matrix, , considering 
they can be different for each interval ሺܰ െ 1 ൌ 4ሻ of length ݄.  
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     In this way, expression (11) may be written using matrix notation as: 
 

െ݄ଶ࢜ۯ
்݄ۯఝીఝ (20)

 

where the term ݄ comes from the integral given in expression (11), which is 
integrated interval by interval: 
 

  dxߢ
ଵ
 ൌ  ଵdxߢ
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     With this configuration (ܰ ൌ 5), we have five trial functions, ߮, and five 
test functions, ݒ, but only three test functions (ݒଶ, ,ଷݒ  .ସ) are different from zeroݒ
Hence three equations obtained from expression (20) are only different from zero: 
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(22)

 
     The result obtained in Eq. (22) may be rearranged as: 

െۯ۵்ۯી  (23) ܊۵܂ۯ

where the vector of temperatures, ીఝ ൌ ሺߠఝଵ	ߠఝଶ	ߠఝଷ	ߠఝସ	ߠఝହሻ், is split in a 
vector of temperatures representing the state-variables, ી ൌ ሺߠଵ	ߠଶ	ߠଷ	ሻ், and in 
a vector of temperature sources (boundary conditions), ܊ ൌ ሺܾଵ	0	0	ܾସሻ். For this, 
the next change of variables is considered: ߠఝଵ ≡ ܾଵ, ߠఝଶ ≡ ఝଷߠ ,ଵߠ ≡  ଶ andߠ
ఝସߠ ≡ ఝହߠ ଷ andߠ ≡ െܾସ. ۯ is a difference matrix where all the columns are 
independent, which guarantees that the stiffness matrix (K≡ െۯ۵்ۯ) is 
invertible: 
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and ۵ is a matrix of thermal conductances, which is obtained by multiplying the 
length of each interval, ݄, for the matrix of thermal conductivities, :   
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     Next, the terms which refer the heat rate sources and the energy accumulation 
in Eq. (5) may be put altogether as: 
 

݄ଶ න ൬ܿߩ
ߠ߲
ݐ߲

െ ݔdݒ൰
ଵ


 (26)

 

The expression (26) may also be written in matrix notation. For instance, by 
making the integration using the Lagrange interpolation method: 
 

න ݃ሺݔሻݒሺݔሻdݔ
ଵ


ൎ ݃ሺݔሻන ݔሻdݔሺݒ

ଵ


 (27)

 

where in our case for ݃ ൌ ݄ଶሺߠܿߩሶ െ  .ሻ
     Eq. (27) may be split in five terms corresponding to five test functions (ܰ ൌ
5), but only three test functions will be different from zero as in Eq. (22). This 
allows to define the matrix of thermal capacities,	۱, as: 
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1
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00

00

C

C
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where ܥ ൌ  :݄ܿଷ; and the vector of heat rate sources is defined asߩ
 

 ൌ ሺ ଵ݂ ଶ݂ ଷ݂ሻ் (29)
 

where ݂ ൌ  .݄ଷ
     The resulting matrix expression is: 

۱ીሶ െ (30) 

where ીሶ  is the time derivative of the vector of temperatures at nodes, ી. 
     Finally, by combining equations (23) and (30), a system of differential 
algebraic equations (DAE), i.e. a thermal network, may be finally deduced from 
the heat equation: 

۱ીሶ ൌ െۯ۵்ۯી  ܊۵்ۯ   (31)
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3 Conclusions 

Thermal networks may be deduced from the heat equation by using the finite 
element method. This implies the statement of a theoretical framework to the use 
of thermal networks without considering the thermal-electrical analogy. Basically, 
the procedure consists on transforming the resolution of the heat equation into the 
resolution of a finite system of differential and algebraic equations, i.e. in 
the resolution of a thermal network. This enables the representation of the heat 
transfer problem in matrix form and facilitates the use of linear algebra for 
studying the dynamics of thermal systems, i.e. for solving parameter identification, 
simulation, and prediction or control problems. The method is to be used in 
practical applications where only a finite number of function values (i.e. discrete 
functions in space) are known. 
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