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Abstract 

A virtual sensor is developed for predicting the time-varying thickness of the 
ledge on the inside surface of a wall of a high-temperature metallurgical reactor. 
The virtual sensor tracks the position of the solid-liquid phase front using 
thermal measurements taken from a heat flux sensor embedded in the reactor 
wall. The virtual sensor comprises a state observer coupled to a reduced model 
of the reactor. It also accounts for the thermal contact resistance of the wall 
structure. Results indicate that the virtual sensor is increasingly accurate as the 
magnitude of the thermal contact resistance augments. Moreover, the predictions 
of the virtual sensor remain accurate even when the contact resistance is poorly 
known.  
Keywords: ledge, metallurgical reactor, virtual sensor, inverse method, thermal 
contact resistance, unscented Kalman filter, state-space model. 

1 Introduction 

The hostile conditions that prevail inside high-temperature metallurgical reactors 
(Figure 1) such as electric arc furnaces, blast furnaces and aluminum electrolysis 
cells [1–3], forbid the direct probing of the time-varying phase change protective 
layers that cover the inside surface of the walls. The standard method for 
monitoring these layers, hereupon called the ledge, is to probe it manually with a 
long metal rod [4]. This task is time consuming, inaccurate and risky. It also 
demands qualified personnel and measurements are usually taken days apart.  
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Figure 1: Cross-view of a typical metallurgical reactor. 

     Recently, LeBreux et al. have proposed a new non-invasive measurement 
technique for predicting the time-varying ledge thickness [5]. The technique rests 
on a nonlinear inverse heat transfer method that uses data collected by a thermal 
sensor embedded in the reactor wall (Figure 2). The inverse method corresponds 
to a virtual sensor that combines a nonlinear estimation algorithm (unscented 
Kalman filter) with thermal measurements (heat flux) thus enabling the on-line 
estimation of the process variable (ledge thickness). 
 

 

Figure 2: The virtual sensor for estimating the ledge thickness. 

     In this study, LeBreux et al. [5] have not taken into account the effect of the 
thermal contact resistance inside the wall structure. As a result, the response 
provided by the virtual sensor may not remain accurate for all operating 
conditions that prevail inside the furnace. Previous studies related to thermal 
contact resistances have focused on the estimation of its magnitude using inverse 
methods [7, 8]. To the authors’ knowledge however, no study has shown the 
effect of the thermal contact resistance on the accuracy of the inverse prediction.  
The present study examines this question.   
     The paper is divided into four sections. First, the thermal model of a 
metallurgical reactor is presented. Second, a virtual sensor for estimating the 
ledge thickness is proposed. Third, the virtual sensor is thoroughly tested for 
typical operating conditions that prevail inside an industrial facility; the effect of 
the thermal contact resistance on the virtual sensor accuracy is exemplified. 
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Finally, the virtual sensor is tested in cases for which the thermal contact 
resistance is poorly known. Its effect on the accuracy of the virtual sensor 
prediction is assessed. 

2 Thermal model of the metallurgical reactor  

The one-dimensional phase change problem under investigation is depicted in 
Figure 3. A time-varying ledge of thickness s(t), which corresponds to the 
solidification front location, is built against the inner surface of a brick wall of 
thickness L. The outer surface of the reactor, a steel shell, is cooled by 
convection heat transfer with constant temperature T∞ and a heat transfer 
coefficient h. A thermal contact resistance R’’contact is present in the wall structure 
between the steel shell and the brick wall. Finally, a time-varying heat flux 
q’’in(t), which represents the heat load supplied to the reactor, is imposed on the 
right boundary condition at x = L+D.  
 

 

Figure 3: Schematic of the phase change direct problem.  

     The mathematical model for the phase change problem rests on the following 
assumptions: 
 The FDM renders faithfully the thermal behavior of a real high-temperature 

metallurgical reactor [1, 9]. 
 The temperature gradients across the wall (x direction) are much larger than 

the temperature gradients in the vertical direction. As a result, a  
one-dimensional analysis can be applied [1, 9]. 

 The phase change problem is non-isothermal. It is characterized by a mushy 
zone between the solidus temperature Tsol and the liquidus temperature Tliq. 

 The thermal contact resistance R’’contact between the steel shell and brick 
wall is taken into account by modifying the thermal conductivities of 
neighbouring materials. 

 The thermal properties of the phase change material (PCM) are temperature 
independent; they may, however, be different for the liquid and the solid 
phase. 

 The heat transfer across the liquid layer of the PCM is convection 
dominated. The effect of the flow circulation in the liquid layer is accounted 
by means of an effective thermal conductivity. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 83, © 2014 WIT Press

Advanced Computational Methods and Experiments in Heat Transfer XIII  519



     The governing heat diffusion equation for the wall and the phase change 
material (PCM) may then be stated as: 
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the initial condition is: 
 

ܶሺݔ, 0ሻ ൌ ܶሺݔሻ               (4) 
 

     The volumetric enthalpy change ܪߜ is defined as ܪߜ ൌ ,௨ௗܥ൫ߩ െ
,௦ௗሻܶܥ   corresponds to the latent heat of fusion of the PCM. The ߣ where ߣߩ
liquid fraction F varies linearly between the solidus temperature Tsol and the 
liquidus temperature Tliq (Eq. 5). 
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     Eqs. (1)–(5) were discretized using second-order finite differences in space, 
and first-order differences in time with an implicit scheme. The resulting set of 
algebraic equations is then solved using a tri-diagonal matrix algorithm 
(TDMA). For each time step, the liquid fraction F in Eq. (1) is determined 
according to the enthalpy method, an iterative procedure developed by Voller 
and Swaminathan [10]. Thus, with the known conditions (Eqs. (2)–(5)), the FDM 
provides the evolution of the temperature field T(x,t), the heat flux distribution 
q’’(x,t), and the ledge thickness s(t). 
     The above finite-difference model (FDM) was thoroughly tested and 
validated using analytical solutions and results reported in the open literature. 
Further details concerning the validation of the FDM are provided in Ref. [5].  

3 Virtual sensor for predicting the ledge thickness  

In the inverse problem, the input heat flux q’’in(t) is unknown. Consequently, the 
ledge thickness s(t) cannot be estimated directly (Figure 4). However, from 
thermal measurements Ymes(x,t)

 
provided by a sensor embedded into the reactor’s 

wall, it is possible to estimate q’’in(t) with a state observer and therefore to 
predict the time-varying ledge thickness ̂ݏሺݐሻ using the reduced model of the 
metallurgical reactor.  
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Figure 4: Schematic of the phase change inverse problem. 

     A state observer is a set of mathematical equations that provide an efficient 
recursive mean to estimate the unknown state of a process (the state vector). The 
most popular algorithm is the Kalman filter developed more than 50 years ago 
[11]. In order to estimate correctly the process state, the state observer proceeds 
through two steps: 1) the time update step (prediction) which provides an initial 
estimate of the state vector from the knowledge of the process dynamic model, 
followed by 2) the measurement update step (correction) that integrates sensor 
measurements in order to refine the state vector initial estimate. 
     As for the reduced model, the main objective is to extract, from knowledge of 
the reactor thermal model (section 2) a low-dimensional system (or a reduced 
model) that has nearly the same response characteristics as the process under 
study. The incentive behind model reduction is to come up with a simplified and 
computationally efficient model that captures the main features of the original 
complex model. Since the virtual sensor used in the current work is based on 
Kalman filtering, state-space models are more appropriate for building the 
reduced model. 
     The overall inverse methodology is summarized schematically in Figure 5. 
For more details on the mathematical formulation of the virtual sensor algorithm 
and on the reduced model, the reader is referred to Ref. [5]. In the current paper, 
two virtual sensors are compared for estimating the ledge thickness (Table 1).  
Each of them consists of a different combination of state observers and reduced 
models. 
 

 

Figure 5: The virtual sensor for estimating the ledge thickness.  
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Table 1:  The virtual sensors. 

Virtual 
sensor 

Type State-observer 
Reduced 

model 
Thermal 
sensor 

#1 Nonlinear 
Unscented 

Kalman filter 

Nonlinear 
state-space 

model 
q’’(x = L) 

#2 Linear 
Classic Kalman 

filter 
Linear state-
space model 

q’’(x = L) 

 
     Even though its installation is cumbersome, the heat flux sensor is located at 
the brick/ledge interface x = L. The data collected by the virtual sensor at this 
location was found to be most accurate and yielded the lowest time lag as 
reported in Ref. [5]. The values of the covariance matrices Q and R (Table 2), 
which can be seen as the tuning factors of the virtual sensor, were chosen to 
achieve a compromise between the stability and the tracking capability of the 
inverse method. The stability refers to the oscillations in the solution triggered by 
the measurement noise, while the tracking capability refers to the time lag value, 
resulting from the heat diffusion phenomenon. 

Table 2:  Tuning factors of the virtual sensor. 

Covariance matrices Values 

Q 0
ଶ 0
0 0.01ଶ

൨ 

R 0.0052 

4 Effect of the thermal contact resistance on the virtual 
sensor prediction  

Each of the virtual sensors were thoroughly tested for estimating the  
time-varying input heat flux q’’in on the right boundary and therefore for 
predicting the time-varying thickness of the ledge s inside the reactor. For this 
reason, numerical simulations were carried out for typical operating conditions 
that prevail in such facilities [5]. In order to quantify the accuracy of the inverse 
prediction, the root-mean-square error (RMSE) is adopted:  
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where k is the sampling instant and N the total number of time steps.   
     The effect of the thermal contact resistance on the virtual sensor accuracy is 
presented in Table 3. First, one can note that the nonlinear virtual sensor #1 
provides a more accurate prediction than the linear virtual sensor #2, due to the 
fact that the thermal model of the reactor is highly nonlinear. Moreover, it can be 
seen that for both virtual sensors, the RMSE value decreases as R’’contact 
increases. In other words, the virtual sensor prediction becomes more accurate as 
the thermal contact resistance increases.  
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Table 3:  The effect of R’’contact on the accuracy of the virtual sensor. 

R’’contact 
(m2.K/W) 

RMSE Virtual sensor #1 (m) RMSE Virtual sensor #2 (m) 

0 0.0090 0.0090 
0.006 0.0069 0.0080 
0.010 0.0061 0.0078 
0.015 0.0058 0.0077 

 
     For a small R’’contact (Figure 6), the ledge is thick. The thermal resistance 
increases and the time lags are prolonged and, as a result, the accuracy of the 
estimated ledge thickness is affected. On the other hand, when R’’contact is large 
(Figure 7), the ledge is thin. The inverse prediction becomes more accurate since 
the thermal resistance across the ledge and the time lags are small.   
 

 

Figure 6: Exact and estimated ledge thicknesses – R’’contact = 0 m2.K/W. 

 

Figure 7: Exact and estimated ledge thicknesses – R’’contact = 0.015 m2.K/W. 
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5 What if the thermal contact resistance is poorly known? 

The purpose of this section is to determine the performance of the virtual sensor 
when it is employed in a metallurgical reactor for which the thermal contact 
resistance is poorly known. The problem is depicted in Figure 8. The thermal 
contact resistance of the metallurgical reactor wall, known as the exact value, 
differs from the one assumed by the virtual sensor. As a result, the thermal 
behaviour of the metallurgical reactor will differ from that of the reduced model 
used by the virtual sensor, thereby challenging the performance of the inverse 
predictor.  
 

 

Figure 8: Does the virtual sensor remain accurate when R’’contact is  
poorly known? 

     To assess the performance of the virtual sensor in such a case, the RMSE 
value is invoked one more time (Eq. 6). Numerical simulations were thus carried 
out once again for typical operating conditions that prevail in such facilities. The 
results are presented in the form of four scenarios (Table 4). Scenarios #1 and #4 
correspond to the cases studied in the previous section for which R’’contact is 
known. However, scenarios #2 and #3 represent the cases for which the virtual 
sensor overestimates and underestimates R’’contact respectively.  

Table 4:  R’’contact knowledge on the accuracy of the virtual sensor  

Scenario 
Exact 

R’’contact 
(m2.K/W) 

Assumed 
R’’contact 

(m2.K/W) 

RMSE          Virtual 
sensor #1 (m) 

RMSE          
Virtual sensor 

#2 (m) 
#1 0 0 0.0090 0.0090 
#2 0 0.015 0.0065 0.0089 
#3 0.015 0 0.0062 0.0079 
#4 0.015 0.015 0.0058 0.0077 

 
 
Table 4 reveals that when the virtual sensor overestimates R’’contact (scenario #2), 
the inverse prediction becomes more accurate (scenario #1). This can also be 
seen by comparing the exact and the estimated ledge thicknesses of Figure 9 with 
those of Figure 7.  
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Figure 9: Exact and estimated ledge thicknesses – Scenario #2. 

     On the other hand, when the virtual sensor underestimates R’’contact (scenario 
#3), the inverse prediction is less accurate (scenario #4). This is due to the larger 
thermal contact resistance of the metallurgical reactor.  
     Finally, one may note that the virtual sensor #1 based on the unscented 
Kalman filter is much more sensitive to a poor knowledge of R’’contact as the 
RMSE variation in this case is much larger than that of the virtual sensor #2.  

6 Concluding remarks 

A virtual sensor was developed for predicting the time-varying thickness of the 
ledge on the inside surface of a wall of a high-temperature metallurgical reactor. 
The virtual sensor tracks the position of the solid-liquid phase front using 
thermal measurements taken from a heat flux sensor embedded in the reactor 
wall. The virtual sensor comprises a state observer coupled to a reduced model 
of the reactor. It also accounts for the thermal contact resistance the wall 
structure. Results have shown that the virtual sensor is increasingly accurate as 
the magnitude of the thermal contact resistance augments. Moreover, the 
predictions of the sensor remain accurate even when the contact resistance is 
poorly known.  
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