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Abstract 

The process of heating tissue is considered here. The tissue is treated as a porous 
medium and is divided into two regions: vascular region (blood vessel) and 
extravascular region (tissue). The heat conduction in the domain considered is 
described by the two-temperature model consisting of the system of two coupled 
equations determining the blood and tissue temperatures. The acceptation of the 
certain assumptions leads to the model created by the single partial differential 
equation and the formula concerning the dependence between blood and tissue 
temperatures. In this equation the coupling factor and phase lag times appear. It 
should be pointed out that the phase lag times are expressed in terms of the 
properties of blood and tissue, interphase convective heat transfer coefficient and 
blood perfusion rate. The equation considered is supplemented by the 
appropriate boundary and initial conditions. The task has been solved using the 
finite difference method. In the final part of the paper the results of computations  
(3D problem) are presented. 
Keywords:  bioheat transfer, two-temperature model, generalized dual-phase lag 
equation, finite difference method. 

1 Introduction 

Heat transfer in the living biological tissues is associated with the blood 
perfusion and metabolic heat generation. During the hyperthermia therapy (such 
a problem is discussed here) the tissue domain is subjected to the external heat 
source and then the energy equation is supplemented by the component 
corresponding to the internal heat source associated with the tissue heating. 
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     The Pennes equation [1] is one of the earliest bioheat transfer equations which 
describes the temperature distribution in the living tissue 
 

    ρ λ b b m ex

T
c T wc T T Q Q

t


      


 (1) 

 
where c is the specific heat of tissue, ρ is the density, λ is the thermal 
conductivity, T denotes tissue temperature, t is the time, w is the blood perfusion 
rate, cb is the specific heat of blood, Tb is the arterial blood temperature, Qm is the 
metabolic heat source and Qex is the capacity of internal heat sources associated 
with the external heating of tissue. 
     The Pennes model assumes that the tissue is supplied with a large number of 
capillary vessels, the arterial blood temperature Tb is uniform throughout the 
tissue domain and the vein blood temperature is equal to the tissue temperature. 
In other words, the effect of blood perfusion is assumed to be a homogeneous 
and isotropic one. 
     So far, the Pennes equation is widely used, especially in order to predict the 
temperature distribution during the hyperthermia [2–8] and hypothermia 
treatment [2, 9–12]. 
     It should be pointed out that the Pennes bioheat equation based on the 
classical Fourier’s law of heat conduction which assumes that the thermal 
disturbance propagates with an infinite speed. 
     To take into account the heterogeneous structure of biological tissues, the 
other models of bioheat transfer are developed, for example Cattaneo-Vernotte 
equation [13, 14] or dual phase lag equation [15–19]. In the Cattaneo-Vernotte 
model it is assumed that there is a delay between the heat flux vector and the 
temperature gradient, this means that the temperature gradient always precedes 
the heat flux vector. In the dual phase lag model (DPLM) either the temperature 
gradient (cause) precedes the heat flux vector (effect) or the heat flux vector 
(cause) precedes the temperature gradient (effect) [20]. So, in the first model the 
relaxation time appears, while in the second model additionally the thermalizaton 
time occurs. The main problem at the stage of DPLM application is the 
appropriate estimation of the two phase lag times values [13, 20]. 
     Another group of bioheat transfer models based on the theory of porous 
media [21, 22]. In this approach the tissue is divided into two regions: the 
vascular region (blood vessels) and the extravascular region (tissue). Porosity is 
defined as the ratio of blood volume to the total volume and two equations 
describing temperature field in the tissue and vessels sub-domains are 
considered. 
     Interesting concept is presented in the work [20]. The starting point is the 
model bases on the theory of porous media. After mathematical manipulations 
the dual-phase lag bioheat equations with blood or tissue temperature as sole 
unknown temperature are obtained.  It should be pointed out that in this model 
the phase lag times are expressed in terms of the properties of blood and tissue, 
interphase convective heat transfer coefficient and blood perfusion rate. This is 
the reason that the model is called the generalized dual phase lag model. 
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     In this paper the generalized dual phase lag model is considered. The single 
partial differential equation describing the tissue temperature and the formula 
which allows one to determine the blood temperature are taken in to account.  
The 3D domain of tissue with blood vessels (cube centrally heated) is analysed. 
The problem is solved using the finite difference method. In the final part of the 
paper the results of computations are shown and also the conclusions are 
formulated. 

2 Generalized dual phase lag equation 

The tissue can be treated as a porous medium divided into two regions: the 
vascular region (blood vessel) and the extravascular region (tissue) [20, 21]. To 
describe the temperature field in these sub-domains the two-equation porous 
model [20, 21] can be applied 
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where ε denotes the porosity (the ratio of blood volume to the total volume), α is 
the heat transfer coefficient, u is the blood velocity, A is the volumetric transfer 
area between tissue and blood, c is the specific heat, ρ is the density, λ is the 
thermal conductivity, T denotes temperature, t is the time, w is the blood 
perfusion rate, Qm is the metabolic heat source and Qex is the capacity of internal 
heat sources associated with the external heating of tissue. The subscripts t and b 
represent the tissue and blood, respectively. 
     According to the Minkowycz hypothesis [20, 23], before reaching 
equilibrium, the blood temperature undergoes a transient process described by 
the relation 
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where 
 
 α+ bG A wc  (5) 
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     Parameter G is called the coupling factor. From equation (4) the tissue 
temperature can be determined 
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while 
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     Adding the equations (2) and (3), the following equation is obtained 
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     Introducing the formulas (6), (7), (8) into equation (9) one has 
 

 

 

     

2

2

2 2

ε 1 ε ρ ρ
ερ

ε 1 ε λ ρ
λ ε 1 ε

t t b bb b
e b b b

t b b
e b b m b m t ex

c cT T
C c T

t G t
c

T T Q Q Q
G t

 
   

 
 

      


u
 (10) 

 
where 
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and 
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are the effective thermal conductivity and heat capacity, respectively. 
    The phase lags for heat flux and temperature gradient are defined as [20] 
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and 
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     Then the equation (10) can be written as follows 
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     It should be pointed out that in the dual phase lag equation (15) the blood 
temperature is unknown and the phase lag times are expressed in terms of the 
properties of blood and tissue and the coupling factor between blood and tissue. 
To obtain the bioheat equation where the unknown is only the tissue temperature, 
the blood temperature is determined from equation (6) 
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and this formula is introduced to the equation (15) 
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     Next, the equation (15) is differentiated with respect to time  
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     As it can be seen, the left side of equation (17) is equal to the expression in 
the brackets on the right side of the equation (18).  
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     Thus 
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     It can be approximately assumed that [20] 
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and then the generalized dual phase lag equation where the unknown is only the 
tissue temperature is obtained 
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3 Formulation of the problem and method of solution 

The 3D domain of tissue with blood vessels as shown in Figure 1 is considered 
(cube of side L). Central part of the domain (cube of side L/5) is heated for a 
period of time tex in such a way that the capacity of the internal heat sources in 
this sub-domain is the constant value. 
 
 

 

Figure 1: Domain considered. 
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     Tissue temperature is described by the generalized dual phase lag equation 
(21), while the blood temperature is determined by the formula (16). On the 
external boundary of the domain the no-flux condition is taken into account. The 
initial condition is of the form  
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where Tp is the initial temperature of tissue and blood.  
     The function Qex in equation (21) connected with the heating is defined as 
follows (Figure 1) 
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     Assuming the constant values of metabolic heat sources Qmb, Qmt and taking 
into account the formula (23) the equation (21) can be written in the form 
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     This equation is solved using the explicit scheme of the finite difference 
method [22]. Let T f = Tt (x, y, z, f ∆t) and Tb 

f = Tb (x, y, z, f ∆t) where ∆t is the 
time step. Then, for time t f = f ∆t (f  ≥ 2) the following approximate form of 
equation (24) can be proposed 
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     The uniform grid of dimensions n × n × n is introduced and then the finite 
difference equation for internal node (xi, yj, zk) has the following form 
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while s = f – 1 or s = f – 2 and h is the constant grid step.  
     Finally, the tissue temperature at the node (xi, yj, zk) is calculated from the 
formula 
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     The stability criterion is as follows 
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     The following approximation of equation (16) is proposed 
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thus 
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     The way of boundary condition approximation is discussed, among others, 
in [24].  
     Summing up, for each time step the equation (32) describing the change of 
a blood temperature and the equation (29) describing the tissue temperature 
should be used.  

4 Results of calculations 

In numerical computations the following values of parameters are assumed: 
thermal conductivity of blood and tissue λb = λt = 0.5 W/(m K), blood density  
ρb = 1060 kg/m3,  tissue density ρt = 1000 kg/m3, specific heat of blood cb = 3770 
J/(kg K), specific heat of tissue ct = 4000 J/(kg K), metabolic heat sources 
Qmb = Qmt = 250 W/m3, blood temperature Tb = 37 °C, initial temperature 
Tp = 37 °C, porosity ε = 0.0174 and coupling factor G = 150628.5 W/(m3 K). 
The values of phase lag times τq and τT are determined using the 
formulas (13) and (14). 
     The spatial discretization creates 500 × 500 × 500 nodes and time step is 
equal to ∆t = 0.01 s. Three heating conditions described in Table 1 have been 
considered. Figure 2 shows the tissue temperature distribution in the 1/8 of the 
cube (due to symmetry) after the time 40 seconds and for all variants of the 
heating. 

Table 1:  Variants of heating. 

Variant  
Power density 

Qex [MW/m3] 
Heating duration tex [s] 

1 7 5 
2 3.5 10 
3 1 35 

 
 

 
a)              b)              c) 

Figure 2: Tissue temperature distribution for time t = 40 s (1/8 of the cube):  
a) 1st variant, b) 2nd variant, c) 3rd variant. 
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     In Figure 3 the courses of tissue and blood temperatures at the central point of 
cube for different variants of heating are shown. As can be seen, in each case, the 
blood temperature and the tissue temperature are similar. 
     The position of isotherms (tissue temperature) in the central part of cross-
section after the time 7 seconds is presented in Figure 4. 
 

 

Figure 3: Temperature history at the central point: 1 – 1st variant, 2 – 2nd 
variant, 3 – 3rd variant. 

 

 

Figure 4: Tissue temperature distribution at the central part of cross section 
after 7 s, a) 1st variant, b) 2nd variant, c) 3rd variant. 

5 Conclusions 

To determine the tissue temperature the generalized dual phase lag equation has 
been used, while the blood temperature has been calculated on the basis of 
formula describing the relationship between tissue and blood temperatures. 
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Occurring in the mathematical model coupling factor and the phase lag times 
contain the information about the properties of the blood, interphase convective 
heat transfer coefficient and blood perfusion rate. 
     The 3D problem concerning the internal heating of the domain considered has 
been analysed and three variants of heating have been taken into account. At the 
stage of numerical computations the explicit scheme of a finite difference 
method has been used. Computations have shown that for the assumed porosity 
the blood temperature and the tissue temperature differ slightly. In turn, the 
choice of variant heating has a significant effect on the distributions of 
temperature and their maximum values in the considered domain.  
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