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Abstract 

The development of a spatial/angular agglomeration multigrid methodology is 
reported for the acceleration of a parallel node-centered finite-volume algorithm, 
numerically predicting radiative heat transfer in tetrahedral or hybrid 
unstructured grids. For spatial agglomeration, a sequence of coarser meshes is 
constructed, by merging the adjacent control volumes on a topology-preserving 
framework. Similarly, for the angular agglomeration, coarser angular resolutions 
are generated with the fusion of the neighbouring solid control angles, deriving a 
new angular discretization with the quarter number of control angles. The 
multigrid accelerated numerical solution of the Radiative Transfer Equation 
(RTE) is achieved via the Full Approximation Scheme (FAS) in a V-Cycle 
process. The proposed algorithm has been validated against benchmark test 
cases, demonstrating its capability for improved computational performance, 
especially in problems with purely scattering media and/or reflecting surfaces. 
Keywords: radiative heat transfer, node-centered, finite-volume method, 
multigrid, spatial/angular agglomeration, 3D unstructured hybrid grids. 

1 Introduction 

Radiation is one of the major modes of heat transfer in many engineering 
applications including combustion, such as combustion chambers, buildings on 
fire, etc. For its numerical prediction various methodologies have been 
developed during the last decades with the finite-volume method, initially 
introduced by Raithby and Chui [1], being one of the most widely applied 
techniques. Part of its popularity derives from its capability to be implemented 
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along with unstructured grids, employed for the representation of complicated 
geometries. Nevertheless, comparing to the structured solvers for the same test 
case, the unstructured ones seem to be relatively inefficient [2–4]. Moreover, 
using a finer spatial and angular discretization, higher-order accurate schemes  
[5, 6] or a higher-order RTE [7] reduces even more the computational 
performance of such codes. 
     A remedy to this drawback appears to be a well established technique in 
Computational Fluid Dynamics (CFD), the multigrid method, which considers 
the solution of the examined problem on successively coarser meshes [4]. Its 
development was based on the observation that iterative schemes converge more 
slowly on finer grids, as they succeed efficient damping for the high frequency 
errors but not for the low frequency ones [8]; using coarser meshes the latter 
become actually high frequency ones, allowing for their quick damping by the 
commonly implemented numerical approaches [4, 8]. Various types of  
the multigrid methodology have been developed during the past decades, such as 
the Algebraic Multigrid (AMG), considering the construction of a coarsening 
matrix rather than the generation of any new grid topology, the geometrical 
multigrid, according to which new independent or nested meshes are generated, 
and the agglomeration multigrid introduced initially by Lallemand [9] and 
analyzed in this paper. For a multigrid method involving grid generation, the 
procedure allowing for the interaction between each two successively coarser 
grids has to be defined. For example, the Full Multigrid (FMG) method begins 
with the solution of the governing equations on the coarsest grid, in order to use 
it as an initial guess for the solution on the next finer one [4, 8], while the FAS, 
used in the present work, considers the relaxation of the finest mesh solution on 
all the available grids during each cycle, utilizing appropriate transfer operators 
for their interaction; in that way smoothed versions of the finest level solution 
are obtained from the coarser grids [8]. Independently of the employed scheme, 
an associating relation is required for smoothing the variables from the finer to 
the coarser mesh (restriction) as well as for interpolating them from the coarser 
to the finer one (prolongation) [8]. 
     In this study, a spatial, an angular, and a combined spatial/angular 
agglomeration multigrid method was developed to be used along with an existing 
parallel node-centered finite-volume algorithm for the numerical computation of 
radiative heat transfer through absorbing-emitting and scattering gray media  
[5, 10]. For the spatial scheme, an isotropic agglomeration of the neighbouring 
control volumes is considered on a topology-preserving framework resembling 
the advancing front technique [11]. The procedure is performed simultaneously 
on all the partitions in which the computational field has been divided for 
parallelization [10], beginning from the boundary nodes and extending to the 
internal region. Special care is attributed to the nodes constituting  
the overlapping area, allowing for interaction between the sub-domains. The 
numerical solution is achieved implementing the FAS via a V-cycle strategy 
V(1,0), which corresponds to relaxation only once before the restriction to the 
coarser level, and to none after the prolongation to the finer one [11]. Similarly, 
for the angular method, the adjacent solid control angles are merged, deriving a 
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coarser directional “sphere” [5, 10] with the quarter number of control angles; 
the same technique with the spatial scheme is implemented for numerical 
computation. Finally, a combined spatial/angular multigrid method was 
developed for even more acceleration, which involves the nested implementation 
of the pre-mentioned angular scheme at each step of the spatial one. The 
proposed methodology, which to the authors’ best knowledge hasn’t been 
employed before, was validated against benchmark test cases, revealing its 
potential for improved computational performance, especially in problems with 
purely scattering media and/or reflecting surfaces accounting for increased 
interaction between the defined solid control angles. 

2 Radiative heat transfer solver 

The radiative intensity  ˆ,pI r s


 at a node p in position r


 and time t along a path 

ŝ  through an absorbing, emitting and scattering gray medium can be defined by 
the time-dependent RTE as [5] 
 

        ˆ,
ˆ ˆ, ,1

ˆ, .p p r s
s p R

dI r s dI r s
k I r s S

c dt ds      


 


  
(1) 

 
where c is the propagation speed of radiation in the medium, ka is the absorption 
coefficient, σs is the scattering coefficient and ˆ,r s

RS


 is the sum of the emissive 

black body source term and the in-scattering integral [5, 10]. According to the 
basic idea of the finite-volume method, the RTE is solved for a finite number of 
control volumes and a finite number of solid control angles, calling for spatial 
and angular discretization of the examined computational domain respectively. 
Thus, a node-centered median dual control volume strategy is employed, 
considering the construction of the control volume of a node by connecting lines 
defined by edge midpoints, barycenters of faces and barycenters of elements, 
sharing this node [4, 5, 10]. For the angular discretization, the commonly used 
“sphere” to represent the directional domain is divided into a finite number of 
solid control angles, using lines of constant longitude and constant latitude [1, 5]. 
     The integration of eqn (1) over the control volume Vp of a node p and the 
discrete control angle ΔΩmn, along with the implementation of the divergence 
theorem on the left hand side terms, derives the following formulation [5] 
 

  .
mn

pmn mn mn mn mn mn
p i ci i s p R p

i

V
I I D A k I S V

c t  


          
 

(2) 

 
where mn

ciD  is the directional weight of the i part of the control volume’s surface 

(extending to an area ΔΑi) along the path of the solid control angle mn. For the 
computation of the source term mn

RS  in case of an anisotropically scattering 

medium, the Legendre polynomials [10] are employed to define the average 
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scattering phase function at a pre-computation stage, as their value does not 
differentiate during the iterative procedure. The intensity value at the interface of 
each two adjacent control volumes is associated with the corresponding nodal 
values by implementing the step scheme as follows [5] 
 

, , .mn mn mn mn mn mn
i ci p ci out q ci inI D I D I D                                (3) 

 
where the first right hand side directional weight corresponds to an outgoing 
intensity of the control volume of node p, while the second one to an incoming 
intensity from the control volume of node q. Considering the edge-based 
structure of the algorithm, the pre-mentioned flux computation becomes a 
straightforward procedure, performed with a single loop over all the edges of the 
grid. For the overhang problem, resulting from the implementation of the finite-
volume method on an unstructured mesh, the pixelation method is applied [5].  
     Finally, the contribution of the boundary conditions have to be included to the 
boundary nodes’ flux balance; for opaque and diffusive surfaces, as these 
employed in this work, the radiative intensity mn

wI  coming into the boundary 

control volume is defined as [5] 
 

, , ,
1 1

1
.i i i i

i i

NN
m n m nmn w

w w b p p ci out w
m n

I I I D



  


  

 

  (4) 

 
where εw is the wall emissivity, Nθ is the number of azimuthal angles and Nφ the 
number of polar ones. The first term accounts for the black body intensity of  
the wall node while the second one for the diffusively returning intensity from 
the same surface. Considering an implicit treatment of the boundary conditions 
[5] along with the pre-mentioned step scheme, eqn (2) for a node p is 
reformulated as 
 

 

   , , , , , ,

,

.

mn
pmn mn mn mn

p s p R p

mn mn mn mn mn mn mn mn
p ci out i ci out w w q ci in i w ci in w w p

i i

V
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c t

I D A D A I D A I D A R

 


       
         

(5) 

 

where mn
pR  is the flux balance of node p along the path mn. Depending on the 

examined test case a second-order spatial scheme with an appropriate slope 

limiter [5] can be used, replacing the values of radiative intensity mn
pI  and mn

qI  at 

the right hand side of the previous equation with their corresponding Taylor 
series’ reconstructed values [4, 5]. Finally, for time integration and relaxation of 
eqn (5), a second-order accurate in time, four-stage Runge-Kutta method (RK) is 
used, along with the local time-stepping technique, allowing for the utilization of 
the maximum allowable time step for each node [4, 5]. 
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3 Spatial agglomeration multigrid scheme 

For the implementation of the spatial agglomeration multigrid scheme, first of all 
the fusion strategy for the generation of the coarser grids’ sequence has to be 
defined. As previously mentioned, the agglomeration is performed on a 
topology-preserving framework at each partition, following pre-defined rules, 
concerning mainly the fusion of the boundary nodes as well as the ghost nodes at 
the overlapping regions [10]. The whole procedure can be divided in the 
following steps: 
 
a) The nodes belonging to two or more boundary-condition-type closures 

(excluding those with symmetry conditions) are identified and transferred to 
the next agglomeration level as singletons.  

b) A list of the eligible for fusion wall boundary nodes, the so-called seed 
nodes, is constructed.  

c) The main agglomeration procedure begins by looping over these nodes and 
merge their control volumes with those of their adjacent ones, belonging to 
the same surface (all at the same boundary only, or all being internal ones), 
creating the supernodes of the next coarser level, unless they have been 
already merged or limited for agglomeration. In case a singleton-supernode is 
created, due to the previous fusion of all its neighbours or in case a 
supernode is completely surrounded by another supernode, it is examined to 
be merged with its adjacent supernode with the less number of included 
nodes. The procedure stops when all the seed nodes have been agglomerated 
or assigned as singletons.  

d) A new list of seed nodes is created, including the nodes that their control 
volumes have been contacted by the agglomeration front. In addition, a 
priority hierarchy is imposed, based on the number of times a node has been 
touched by the pre-mentioned front, as well as on the minimum number of 
adjacent nodes.  

e) The steps c and d are repeated until all the nodes of the computational grid 
have been examined for agglomeration. In Figure 1 the fusion of three 
control volumes at a prismatic region is illustrated.  

f) The ghost nodes at the overlapping area are agglomerated or assigned as 
singletons, according to their core nodes’ fusion at the adjacent partition, 
creating ghost supernodes which may include different number of merged 
nodes compared to their corresponding core supernodes.  

g) The new superedges, connecting adjacent supernodes, are created. The 
internal edges at each supernode’s control volume are deleted, while  
the external ones are maintained for the computation of the new directional 
weights.  

h) Finally, the supernodes assigned as singletons are identified, while their 
neighbours are marked to become also singletons at the next agglomeration 
level; the generation of significantly irregular coarser grids is avoided.  

i) If an even coarser mesh is required, the whole procedure is repeated.  
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Figure 1: Spatial agglomeration of three control volumes at a prismatic region.  

     Since the generation of coarser grids is completed, the corresponding 
directional weights, pixelation method coefficients, and local time steps are 
computed, in order the FAS scheme to be employed and the multigrid 
accelerated solution of the RTE to be obtained. In accordance with this scheme, 
at each multigrid cycle eqn (5) is relaxed for the first non-multigrid level 
(denoted at next with the subscript h), while at next the values of radiative 
intensity as well as the flux balances are restricted to the next coarser level 

(denoted with subscript H), using the transfer operators  H

I h
I

 
and  H

R h
I  as [4] 

 

 , .
Hmn mn mn

P restricted I p p p Ph
I I I I V V  

   

(6) 
 

 , .
Hmn mn mn

P restricted R p ph
R I R R  

    

(7) 
 

where P corresponds to the supernode including nodes p of the finer grid. As 
mentioned earlier in Introduction, an approximated first-order accurate spatial 
RTE is solved for the coarser grids, in which the forcing function AH is added to 
the right hand side term of eqn (5), reformulating it as follows [4]: 
 

   , , , .

H

mn mn mn mn mn mn
P FAS P P P restricted P P restricted

A

R R I R R I    
    

(8) 

 

     In case an even coarser level 2H has been generated, eqns (6)–(8) are again 
employed, until an updated solution on the coarsest grid is obtained. 
Subsequently, the corrections of radiative intensity are prolongated to the next 
finer level, using a simple point injection scheme as [4]: 
 

  , .
hmn mn mn mn mn

p I P P P P restrictedH
I I I I I I      

   

(9) 
 

     The new value of radiative intensity at the next finer grid is computed by 
adding this correction, while the procedure continues until the corresponding 
values at the finest resolution are updated. 

4 Angular agglomeration multigrid scheme 

The angular scheme begins with the fusion of the neighbouring solid control 
angles similarly to the spatial one; nevertheless, it is much simpler due to the 
absence of the limitations constraining the latter one. At each angular 
agglomeration level, every two adjacent azimuthal and polar angles are identified 
and merged respectively, deriving a coarser directional “sphere” with the quarter 
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number of solid control angles (half number of control angles in two 
dimensions). In Figure 2 the schematic representation of the angular fusion in 
two dimensions is illustrated; the 16 control angles of the initial resolution are 
merged to 8 ones for the second level.  
 

 

Figure 2: Angular agglomeration in two dimensions. 

     As one can observe, the agglomeration is performed between angles 
belonging to the same quadrant of the directional circle; it is this the unique 
limitation imposed to this scheme in order the derived superangles as well as the 
merged ones to have the same sign. This constraint results additionally to  
the definition of a minimum accepted number of azimuthal and polar control 
angles; 4 and 2 respectively. Similarly to the spatial scheme, the angular 
agglomeration is assumed to be complete with the computation of the directional 
weights and the pixelation coefficients for the new angular levels. 
     As far as the angular agglomeration multigrid enhanced solution of the RTE 
is concerned, the same strategy to the spatial scheme is followed. At each cycle 
eqn (5) is solved for the non-multigrid level (denoted with mn); the values of 
radiative intensity are restricted angularly weighted to the next coarser resolution 
(denoted with MN), while the flux balances are restricted as angularly summed.  
     For the coarser discretizations an approximated equation is solved, including 
the angular forcing function AMN, defined as: 

 , , .MN MN MN MN
p restricted p p restrictedA R R I 

    

(10) 

     Since the solution to the coarsest directional “sphere” is obtained, the 
radiative intensity corrections are prolongated to the next finer resolution 
similarly to the spatial scheme. 

5 Combined spatial/angular agglomeration multigrid scheme 

A combined spatial/angular agglomeration multigrid scheme was finally 
developed to enhance the existing finite-volume solver with additional 
acceleration; it considers the nested implementation of the angular multigrid 
scheme at each level of the spatial one, as illustrated in Figure 3. The procedure 
begins with the spatial agglomeration at each partition, while at next the coarser 
angular resolutions are generated. For the iterative solution, the flux computation 
is performed in the same way, except for the computation of the spatial/angular 
forcing function

 
MN
HA , which is described as: 
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        
  

, ,

.

MN MN MNMN mn MN mn mn mn
H R P FAS P I P R P Hmn mn mn

MNMN mn
P I Pmn

A I R R I I I R A

R I I

   


         

(11) 

 

     In Figure 3, the bullets denote the positions where the Runge-Kutta (RK) 
method is implemented in each multigrid cycle; As it can be observed, it is 
applied both at the beginning and at the end of the angular multigrid cycle; this  
is necessary in order the values of radiative intensity and flux balances to be 
updated and consequently smoothed before being prolongated spatially. 

6 Numerical results 

For the evaluation of the proposed algorithm two benchmark test cases were 
examined and presented in this paper, considering a quasi-3D cubic enclosure, 
examined initially by Kim and Lee [12], and a 3D tetrahedral enclosure, 
encountered previously by Murthy and Mathur [13]. The simulation results are 
compared with the corresponding ones of the reference solvers via the 
distributions of dimensionless incident radiative heat flux Q* [5, 10]. For  
the assessment of the achieved acceleration by the proposed multigrid scheme 
the radiative intensity residual is computed for each cycle (iteration for a  
single-grid) at the spatial/angular finest (1st) multigrid level as 
 

, 1 ,

1 1 1

P NNN
mn l mn l
P P P

P m n

residual I I N N N


 


  

 
   

(12) 

 

where  NP is the number of the nodes of the finest/initial grid. The notation  
SxAy is used to define the applied multigrid scheme, where x indicates the 
utilized spatial multigrid levels while y denotes the angular ones, i.e. S3A2 
corresponds to three spatial and 2 angular multigrid levels while S1A1 to a 
single-grid simulation. 
 

 

Figure 3: Combined spatial/angular agglomeration multigrid cycle. 
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6.1 A cubic enclosure 

The first quasi-3D test case concerns radiative heat transfer in a cubic enclosure 
with edge length equal to 1m (Figure 4), filled with a purely anisotropically 
scattering medium (extinction coefficient β and scattering albedo ω equal to 
unity) [12]. The medium as well as the walls are assumed to be cold, except for 
the bottom face (zw = 0m) at which a constant heating energy is implemented  
(E = 1W/m2) and the faces normal to x-direction, where symmetry boundary 
conditions are imposed. For the angular discretization 16 azimuthal and 8 polar 
angles were employed, while the overhang problem was alleviated by 
implementing the pixelation method. The mesh utilized for this simulation is 
composed of 13,433 nodes and 71,589 tetrahedrons, while for parallelization 
purposes it was divided in 6 partitions. 
     For the evaluation of the proposed methodology three sub-cases were 
encountered, considering different values of wall emissivity εw (1, 0.5 and 0.1 
respectively). The Runge-Kutta method was applied along with a second-order 
accurate spatial scheme, jointed with the Min-mod limiter on a Workstation with 
an AMD FX(tm)-8350 eight-core processor at 4.00 GHz. Figure 4 presents the 
cubic geometry as well as the obtained distributions of incident radiative heat 
flux Q* along the A–A line, compared with the corresponding results of the 
reference DOM (Discrete Ordinates Method) solver of Kim and Lee [12]. In 
Figure 5a–d the convergence history per iterations and time of the employed 
non-multigrid and multigrid schemes is illustrated for the first two sub-cases  
(εw = 1 and εw = 0.5); as expected the obtained acceleration increases with the 
decrease of the wall emissivity, achieving a maximum temporal speed-up 
coefficient equal to 4.94. 
     Figure 5e–h includes the corresponding history for the last sub-case: Figure 5, 
e–f, results correspond to εw = 0.1, where a maximum temporal speed-up 
coefficient equal to 8.12 was achieved using the S4A3 scheme. Additionally, 
Figure 5g–h illustrates (for the same value of εw), the temporal convergence rates 
for different spatial and angular multigrid schemes, confirming the contribution 
of the proposed algorithm to considerably augment the computational 
performance. 
 

              

Figure 4: Utilized geometry (left) and distribution of incident dimensionless 
radiative heat flux Q* along the A–A line (right). 
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Figure 5: Convergence history for the three sub-cases of the cubic enclosure.    

6.2 A tetrahedral enclosure 

The second test case considers a tetrahedral enclosure with black walls (εw = 1), 
as illustrated in Figure 6 [13]. Although not necessarily required, a relatively fine 
grid was used, composed of 196,847 nodes and 1,119,456 tetrahedrons, divided 
in two partitions for parallelization; this mesh was used in order to amplify the 
effect of the multigrid method and evaluate its performance in large grids. For 
angular discretization 16 azimuthal and 8 polar angles were employed along with 
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the pixelation method. Two different sub-cases were encountered, employing a 
first-order accurate spatial scheme on a Workstation with an AMD FX(tm)-8120 
eight-core processor at 3.1 GHz. For the first one an absorbing-emitting medium 
(ka = 1m-1, σs = 0m-1) maintained at constant temperature of 100K is considered, 
while all the walls are assumed to be cold; the distribution of the incident 
dimensionless radiative heat flux Q* along the A–A line is presented in Figure 6, 
very well compared with the corresponding one of Murthy and Mathur [13]. In 
Figure 7a–b the convergence history per iterations and time is illustrated for all 
the employed spatial multigrid schemes, obtaining a maximum temporal speed-
up coefficient equal just to 1.95, due to the absence of medium’s scattering. 
 

                 

Figure 6: Geometry (left) and distribution of flux Q* along the A–A line (right).  

 

         

         

Figure 7: Convergence history for the two sub-cases of the tetrahedral 
enclosure.  

     The second sub-case concerns a purely scattering cold medium (ka = 0m-1,  
σs = 1m-1) and cold walls, except for the face including the A–A line, which is 
maintained at constant temperature of 100K. Figure 7c–d presents the obtained 
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convergence history along with the speed-up rates (maximum in time: 3.07 for 
S3A2), revealing once more the capability of the algorithm for enhanced 
acceleration of the solution procedure, when a scattering medium is assumed. 
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