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Abstract 

The boundary element method (BEM) is a suitable numerical method used to 
study heat diffusion by conduction, which only requires the discretization of the 
boundary of the material discontinuities. However, one of the biggest challenges 
to this technique is the integration of mathematical singularities. In this work the 
BEM is used to simulate the heat conduction in the vicinity of 3D inclusions, 
when heated by dynamic heat point sources. Continuity of temperatures and heat 
fluxes are prescribed along the boundary interfaces. All boundary interfaces are 
discretized using constant elements. The proposed algorithm is verified by means 
of known analytical solutions for cylindrical inclusions. 
Keywords: heat conduction, three-dimensional sources, three-dimensional 
boundary element method, singular integrals. 

1 Introduction 

The study of heat transfer has been increasingly important in many branches of 
engineering. Numerous works have been published proposing different models, 
based on both analytical [1] and numerical analysis, to study heat diffusion 
through different systems and materials. Different approaches could be taken 
into account in a numerical analysis, depending whether the numerical method  
is based on domain-discretization such as finite elements (FEM) [2] and finite 
differences (FDM) [3, 4]  or on boundary discretization such as the boundary 
element method (BEM) [5, 6] . More recently, some researchers have been 
focused on the development of meshless methods to study physical phenomenon 
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of heat transfer, requiring neither domain nor boundary discretization, such as 
the method of fundamental solutions (MFS) [7].  
     Amongst the numerical methods, the BEM is possibly one of the most 
suitable tools for modeling homogeneous unbounded or semi-infinite systems 
because it automatically satisfies the far field conditions. As a result the BEM 
enables a compact description of the regions, discretizing only the boundaries of 
the inclusions, resulting however in fully populated systems of equations, 
contrary to the sparse systems given by the FDM and FEM techniques. Thus, the 
size of the equation system to be solved is efficiently reduced.  One disadvantage 
of the BEM is that it can only be applied to more general geometries and media 
when the relevant fundamental solution is known. However, this may not always 
be possible. Furthermore it is well known that, depending on the distance 
between the source point and the node being integrated, the boundary integrals 
may become singular or nearly singular, increasing the difficulty associated with 
the mathematical model.  
     Due to the high computational cost brought by three-dimensional simulation 
phenomena, different authors have proposed a number of BEM formulations. Ma 
et al. [8] applied a BEM formulation to study transient heat conduction in 3D 
solids with fiber inclusions. Jablonski [9] solved 3D Laplace and Poisson 
equations by proposing the analytical evaluation of the surface integrals 
appearing in BEMs. Qin et al. [10] implemented changes to the conventional 
distance transformation technique to evaluate nearly singular integrands on 3D 
boundary elements, including planar and curved surface elements and very 
irregular elements of slender shape. 
     One of the biggest challenges of the BEM is the correct integration of the 
singular integrals.  The BEM research community has been proposing a variety 
of methods in order to overcome some of the difficulties posed by singularities, 
as it is described by Zhou et al. [11]. Alternatively it can be used analytical and 
semi-analytical methods, as well as other approaches such as non-linear 
transformation [12–14] or distance transformation techniques [15–17].   
     The accuracy of the BEM is highly dependent on the precision of singular 
integrals which, for 3D problems, are mostly solved using numerical schemes 
based on Gaussian integration schemes. However, some researchers have been 
looking for semi-analytical solutions or sophisticated approaches in order to 
improve the accuracy of BEM models used to solve specific problems [18]. Niu 
et al. [19] proposes a semi-analytical algorithm for 3D elastic problems that 
require the evaluation of nearly strongly singular and hypersingular integrals on 
the triangular and quadrilateral elements. Applying a scheme of integration by 
parts, the nearly singular surface integrals are transformed to a set of line 
integrals along the boundary for which standard numerical quadrature can be 
used.  
     This paper first presents a 3D BEM formulation in the frequency domain to 
simulate the heat diffusion inside a 3D inclusion containing an inner 3D 
body/defect. The analytical evaluation of the singular integral that appear in the 
3D BEM formulation, when the element being integrated is the loaded one, is 
given. These functions are subsequently incorporated in the 3D BEM 
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formulation and used to simulate the heat diffusion in the vicinity of a 3D 
circular cylindrical inclusion containing an embedded circular cylindrical body, 
when heated by a dynamic point source. Analytical solutions have been derived 
for this problem.  

2 Geometry of the problem 

Consider a 3D body (Medium 1) bounded by a surface S1, implanted in a 3D 
inclusion (Medium 2) with surface S2, which is surrounded by a spatially 
uniform solid medium (Medium 3) with thermal diffusivity 3K (see Figure 1).  

Media 1 and 2 exhibit thermal diffusivities 1K  and 2K , respectively. Thermal 

diffusivity nK  is defined by n

n nc




, where n  is the thermal conductivity, n  is 

the density and nc  is the specific heat of each medium n . Consider further that 

this system is subjected to a point heat source placed at O  , ,s s s sx y zx . 

 

 

Figure 1: Three-dimensional geometry of the problem. 

     The incident temperature field produced at  , ,x y zx  
by this heat source 

can be expressed by 
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3 Boundary element formulation (BEM) 

The transient heat transfer by conduction to calculate the heat ( ( )nT ) at any point 
of the spatial 3D homogeneous solid domain is governed by the diffusion 
equation: 

  
2 2 2

2( ) ( )
2 2 2

( ) ( , ) 0n n
cnT k T

x y z
 
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x, x  (2) 

in which i
cn

n

k
K


 . 

     The boundary integral equation, formulated in the frequency domain, can be 
constructed by applying the reciprocity theorem, leading to the following 
boundary equations: 
 

a) along the domain of the implanted body (Medium 1) 
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b) along the domain of the inclusion (Medium 2) 
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c) along the exterior domain (Medium 3) 
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where ( )nG  and ( )nH  are respectively the fundamental solutions (Green’s 

functions) for the temperature ( ( )nT ) and heat flux ( )( )nq , at a point 

( , , )x y zx  on the boundary 1S  and 2S , due to a virtual point heat source at 

 0 0 0 0, ,x y zx ; 1nn  and 2nn  represent the unit outward normal along the 

boundary 1S  and 2S , respectively, at ( , , )x y zx ; b  is a constant defined by 

the shape of the boundary, taking the value 1/ 2  if  0 0 0 0, ,x y z S x , and 1

otherwise. 
     The required Green’s functions for temperature and heat flux in an unbounded 
medium, in Cartesian coordinates, are given by: 
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with      2 2 2

0 0 0r x x y y z z       

     The global solution is found by solving eqns (3), (4) and (5), which requires 
the discretization of the interfaces 1S  and 2S  into N  planar boundary elements, 

with one nodal point in the middle of each element.  
     The integrations in eqn (6) are evaluated using a Gaussian quadrature scheme 
when the element to be integrated is not the loaded element. For the loaded 
element (the singular element), however, the integrands exhibit a singularity and 
the integration can be carried out in closed form, as will be demonstrated. 
     Consider the singular rectangular element of width W (in the x  direction) and 
length L (in the z direction) shown in Figure 2. 
 

 

Figure 2: Scheme of a planar boundary element. 
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     Since in this case r is perpendicular to the normal (e.g. 1 0n nr , 2 0n nr ), 

the singular term 
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disappears. On the other hand, the integration of 
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where  nsS   are Struve functions of order ns . 

4 Verification of the BEM formulation 

In this section, the proposed algorithm is verified using two circular cylindrical 
concentric inclusions, embedded in an unbounded space, aligned along the z  
axis (see Figure 3), for which analytical solutions can be derived. A point heat 
source placed at  , ,s s sx y z is assumed to excite the medium. Continuity of heat 
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temperatures and heat fluxes are prescribed on the interfaces between inclusions 
and on the exterior boundary. To enable comparison with the 3D BEM model, 
the length of the inclusion is limited by imposing null heat fluxes on sections 

0.0 mz   and tz L . 

 

 

Figure 3: Two circular cylindrical concentric inclusions embedded in an   
unbounded space, with length limited by adiabatic sections. 

     The analytical solution for this problem is obtained by first applying a spatial 
Fourier transformation in the z  direction, which allows the solution to be 
obtained as the sum of two-dimensional solutions with a varying spatial 
wavenumber in that direction. The null normal heat fluxes at sections 0.0 mz   

and tz L  are accomplished by adding the temperature field generated by the 

real source to that produced by virtual sources (image sources), which are placed 
in the z  direction and act as mirrors of the real source, so as to ensure the 
required boundary conditions. 
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where 0m sz z z  , 1 0 2m tz z z L m   ,  2 0 2 1m tz z z L m    , 

3 0 2m tz z z L m    and 4 0 2m tz z z L m   .   
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     The number of virtual sources zNS  to be used in the calculations is defined 

so that the signal responses can be correctly computed in the time frame, which 
is determined by the frequency increment1 f . This procedure does not 

introduce any type of error into the computed time impulse response within the 
time window defined. Notice that vsL  should be at least twice the distance from 

the real source to the farthest virtual source.  
     The accuracy of the BEM solution has been studied by computing the 
response at two receivers located in the system as illustrated in Figure 4  
[rec1  0.05,  0.0,  1.0  m , rec2  0.4,  0.0,  0.9  m ]. 

 

 

Figure 4: Scheme of the two receivers placed at two concentric cylindrical    
inclusions embedded in an unbounded space [rec1
 0.05,  0.0,  1.0  m , rec2  0.4,  0.0,  0.9  m ], subjected to a 3D 

point heat source, Tinc. 

     The material thermal properties of the cylindrical inclusion (Medium 2) with 
radius of ܾ ൌ 0.30 m composed by an inner body (Medium 1) with radius of 
ܽ ൌ 0.15 m and of the hosting uniform solid medium (Medium 3) are listed in 
Table 1.

 vsL  is assumed to be 60.0 m . The system is 2 m in length and limited 

by adiabatic surfaces. 

Table 1:  Thermal material properties. 

 
Thermal conductivity,  

-1 -1(W.m .ºC )  

Density,   
-3(kg.m )  

Specific heat, c  
-1 -1( J.kg .ºC )  

Medium 1 0.12 712.0 1550.0 
Medium 2 63.9 7832.0 434.0 
Medium 3 1.4 2300.0 880.0 

 

z=1m

z=0.9m

z=0.9m
z=1.0m
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     The system was subjected to a three dimensional point heat source, Tinc, 
placed at  1.0 m, 0.0 m, 1.0 m . Temperature computations were performed in 

the frequency range 50.0 , 1 10   Hz. The responses were computed for 

complex frequencies  ic     (with 0.7   , 2 f      and
70.5 10 Hzf    ). 

     The responses have been computed both analytically and using the 3D BEM 
formulation, considering a different number of boundary elements.  
     Figures 5a and 5c show the analytical response (real and imaginary parts) at 
the two receivers. Figures 5b and 5d illustrate the absolute value of the error at 
receiver 1 and 2 when the problem is solved using the proposed BEM algorithm, 
using two different numbers of boundary elements to discretize the inclusions: 
800 and 1800. It can be observed that the solution improves as the number of 
boundary elements increases. As expected, the BEM error is higher at the 
receiver 2, since it is placed nearest to the heat source. 
 

 

Figure 5: Analytical solutions and BEM error results at two receivers: rec1 – 
analytical results; b) rec1 – variation of the BEM error with the 
frequency; c) rec2 – analytical results; d) rec2 – variation of the 
BEM error with the frequency. 

     For the same problem described before, the temperature responses were 
computed at one grid of receivers placed at 1.0 mz  , crossing the system. 
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     Figure 6 illustrates the responses obtained. This figure shows the real and 
imaginary parts of the analytical response and the error obtained when the 
system is solved using the BEM. It can be seen that the magnitude of the error 
increases as the receivers approach the inclusion’s boundary. On the other hand, 
as expected, the BEM accuracy improves as the receivers are placed further 
away from the heat source. It can further be observed that the solution improves 
as the number of boundary elements increases, which illustrates the good 
accuracy of the BEM response.  
 

 

Figure 6: Comparative analysis of analytical and BEM responses (real and 
imaginary parts), considering different numbers of boundary 
elements: a) analytical response; b) error using BEM (with 800 
boundary elements); c) error using BEM (with 1800 boundary 
elements). 

5 Conclusions 

In this paper the authors presented the simulation of the three-dimensional heat 
transfer by conduction using a 3D BEM formulation. Analytical integrations 

Real Part  Imaginary Part 

 a) 

 b) 

 c) 
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were given when the element to be integrated is the loaded one (singular 
element).  
     Then, the 3D BEM solution, incorporating the analytical solutions of the 
singular integrals, have been verified against analytical solutions derived for two 
concentric cylindrical circular inclusions limited by two perpendicular sections, 
where null heat fluxes where imposed: the responses showed very good 
accuracy. 
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