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Abstract

In this paper the feedback stabilisation of a two-dimensional pool-boiling system is
discussed. The pool-boiling system is modelled by a so-called heater-only model,
which consists of a Partial Differential Equation (PDE) which describes the heaters
internal temperature field and its (nonlinear) boundary conditions given by the heat
exchange between fluid and heater at the top and the heat supply at the bottom of
the heater. The pool-boiling system is extended with an adjustable heat supply at
the bottom of the heater, by which the unstable transition boiling regime is to be
stabilised. Thereto, a feedback law, based on the Chebyshev-Fourier-cosine modes
of the spectral discretisation of the temperature profile inside the heater, is applied
to the system. The control parameters of this feedback law are designed such that
satisfactory closed-loop dynamics are obtained. Using this specific feedback law,
the control strategy is tested by simulations of the closed-loop pool-boiling system.
Keywords: boiling, feedback, stabilisation, modal control, transition boiling, pool
boiling, numerical simulation.

1 Introduction

Pool boiling may serve as physical model for cooling applications using boiling
heat transfer. Boiling heat transfer is emerging as novel cooling technique, since it
affords cooling capacities substantially beyond that of convential methods, which
are based on air-cooling and single phase liquid cooling, see Mudawar [1], Khan
et al [2] and Brooks et al [3]. Therefore, controlling the dynamical behaviour of
pool boiling systems is the principal subject of investigations in this study.

A pool-boiling system is typically a system where a heater surface is submerged
in a pool of saturated liquid. The heater surface is the fluid-heater interface where
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the actual boiling occurs. If the temperature of this heater surface is increased,
three fundamental boiling modes can be observed, being nucleate, transition and
film boiling. Nucleate boiling, at low temperatures, and film boiling, at high tem-
peratures, are characterised by homogeneous liquid-rich and vapour-rich states of
the fluid on the fluid-heater interface, respectively. They are the only stable modes
in pool boiling. Furthermore, nucleate boiling is the most efficient boiling mode
and, consequently, the desired state in cooling applications.

The transition nucleate-to-film boiling occurs if the heat generation exceeds the
so-called “critical heat flux” (CHF) and thermal equilibrium is possible only in the
film-boiling regime, see Dhir [4]. The intermediate regime is characterised by the
formation and rapid evolution of highly-unstable heterogeneous boiling states (i.e.
coexisting liquid-rich and vapour-rich regions) on the fluid-heater interface. Due
to the jump in system temperature, the transition is accompanied by collapse of
cooling capacity. Hence, optimal cooling performance is a trade-off between close
proximity to the CHF (efficient nucleate boiling) and a safety margin (prevention
of transition), see Mudawar [1] and Chu et al [5].

Aim of the present study is the model-based development of a control strategy
that allows boiling close to the CHF. This control strategy is to be developed by
means of the compact pool boiling model first introduced in Speetjens et al [6].
This model describes the pool boiling dynamics entirely in terms of the temper-
ature field within the heater. The system thus reduces to a PDE which describes
the heater’s internal temperature field and its (nonlinear) boundary conditions, i.e.
adiabatic sidewalls, the heat exchange between fluid and heater at the top and the
heat supply at the bottom of the heater.

In van Gils et al [7] the stabilisation of the transition boiling regime is investi-
gated for a one-dimensional (1D) simplification of the heater-only model. A uni-
form transition state is stabilised by means of a simple linear feedback law based
on the dominant modes of the spatial discretisation of the temperature profile in
the heater. Analyses of this so-called modal controller, propose it as a viable option
for the rapid stabilisation and regulation of the pool-boiling system.

In this study, the objective is stabilisation of the two-dimensional (2D) transition
boiling states. Thereto, the control strategy employed in van Gils et al [7] is applied
to the 2D system. The effectiveness of this method is checked by testing a specific
feedback law, found to stabilise the linearised system, using simulations of the
closed-loop nonlinear system.

This paper is organised as follows. In Section 2 a short introduction to the model
and its steady states is given. Then in Section 3 the used control strategy and the
method to analyse the unstable equilibria of this model are introduced. Subse-
quently, Section 4 treats the simulations of the system where an unstable equilib-
rium is stabilised by the proposed controller. Finally, in Section 5 some conclusions
are drawn.
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2 Pool-boiling model description

Pool-boiling systems are represented in this study by a heater-only model first
presented in Speetjens et al [6]. In this model the boiling fluid is solely mod-
elled by the boundary condition on top of the heater. This is allowed because of a
phenomenology connection between the boiling mode and the interface tempera-
ture, cf. Speetjens et al [6].

2.1 Heater-only model

The heat transfer within the 2D rectangular heater H := [0, 1]× [0, D], see Figure
1(a) is considered. Its boundary conditions are given by (i) adiabatic sidewalls for
x = 0, 1, (ii) a constant heat supply extended with the system input, by which
unstable states must be stabilised at y = 0, and (iii) the nonlinear heat extraction
by the boiling process at y = D. The heat transfer within H is modelled by

∂T

∂t
= κ∇2T, (1)

where the field T = T (x, y, t) is the non-dimensional temperature excess. The
boundary conditions to this PDE are given by

∂T

∂x

∣∣∣∣
x=0,1

= 0,
∂T

∂y

∣∣∣∣
y=0

= − 1
Λ

(1 + u(t)) ,
∂T

∂y

∣∣∣∣
y=D

= −Π2

Λ
qF (TF ), (2)

where TF := T (x, D, t) is the temperature at the fluid heater interface, Λ and κ
the nondimensional heater conductivity and diffusivity, respectively, D the heater
aspect ratio and Π2 the ratio between CHF and constant heat supply. Since physical
considerations imply ΛD/κ = |1 − Π2|, Λ, D (heater properties) and Π2 (heat-
ing conditions) are left as remaining system parameters. In this study these system
parameters are given by Λ = D = 0.2 and Π2 = 2. Furthermore, the nonlinear
heat-flux function qF (TF ) describes the local heat exchange between the heater
and the boiling fluid. On physical grounds, it is identified with the so-called boil-
ing curve, that is, the relation describing the mean heat exchange between heater
and fluid along the entire fluid-heater interface. This implies a functional relation
qF (TF ) according to Figure 1(b). Here TF < 1 and TF > 1 corresponds to local
nucleate and local film boiling regions, respectively, see Speetjens et al [6].

2.2 Equilibria of the model

An extensive exposition on the steady states of this model and their stability prop-
erties is furnished in Speetjens et al [6, 8]. Below a concise recapitulation is
provided.
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Figure 1: Non-dimensional model: heater configuration (a) and heat-flux function
(heavy line) and normalised heat supply (dashed line) (b).

Steady states T∞(x, y) of eqn. (1) are found via application of the method of
separation of variables. This yields a (formal) solution given by

T∞(x, y) =
∞∑

n=0

T̃n
cosh(nπy)
cosh(nπD)

cos(nπx) +
D − y

Λ
, (3)

with coefficients T̃n the spectrum of the Fourier cosine expansion

TF,∞(x) := T∞(x, D) =
∞∑

n=0

T̃n cos(nπx), (4)

of the temperature at the fluid-heater interface. These coefficients are determined
by the nonlinear Neumann condition at y = D, upon substitution of eqn. (3) lead-
ing to

∞∑
n=0

nπ tanh(nπD)T̃n cos(nπx) +
Π2

Λ
qF (TF,∞(x)) − 1

Λ
= 0, (5)

for all x ∈ [0, 1]. Eqn. (5) is the characteristic equation that determines the par-
ticular properties of the steady states of eqn. (1). If T̃n = 0 for n > 0, the equi-
librium is constant in x-direction and eqn. (5) simplifies to qF (TF,∞) = Π−1

2 . As
a result, TF,∞ coincides with the intersection(s) between the boiling curve (solid
line Figure 1(b)) and the normalised heat-supply (dashed line in Figure 1(b)). Here
the left and right intersections correspond to stable nucleate and stable film boil-
ing, respectively. The middle intersection corresponds to an unstable transition
boiling equilibrium. These three equilibria are called the homogeneous equilib-
ria as they are uniform in x-direction. All other equilibria are not uniform in x-
direction and are called the heterogeneous equilibria. Analyses reveal that a conju-
gate steady state solution, given by T ∗

∞(x, y), exists for each heterogeneous equi-
librium. The conjugate solution of the heterogeneous equilibrium considered in
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Figure 2: Fluid heater interface temperature of the heterogeneous equilibrium and
its conjugate solution.

this study exhibit the following symmetry property

T ∗
∞(x, y) = T∞(x + 1, y), x ∈ [0, 1], y ∈ [0, D]. (6)

The temperature distribution on the fluid-heater interface of the heterogeneous
equilibrium and its conjugate solution considered in this study are given in
Figure 2. Heterogeneous solutions are specified by regions which are locally rich
in liquid, TF < 1, or vapour, TF > 1 and thus belong to the transition boil-
ing regime. Furthermore, these equilibria are highly unstable and evolve rapidly
towards one of the stable homogeneous equilibria, see Speetjens et al [8]. This
complicates investigation of these states substantially.

Principal objective of this study is the stabilisation of these inherently unsta-
ble equilibria. Since their conjugate solutions govern exactly the same properties,
stabilisation of a heterogeneous equilibrium automatically means stabilisation of
its conjugate solution and vice versa. Hence, only the stabilisation of the actual
solution is discussed here.

2.3 Linearisation around a specific equilibrium

To determine the stability properties (open-loop and closed-loop) of an equilib-
rium considered, the nonlinear system is linearised around it. Small perturba-
tions v(x, y, t) around the equilibrium T∞(x, y), are considered, i.e. T (x, y, t) =
T∞(x, y) + v(x, y, t). The linearised system then is given by

∂v

∂t
= κ∇2v, (7)

with the boundary conditions

∂v

∂x

∣∣∣∣
x=0,1

= 0,
∂v

∂y

∣∣∣∣
y=0

= − 1
Λ

u(t),
∂v

∂y

∣∣∣∣
y=D

= −Π2

Λ
γ(x)v(x, D, t), (8)

where γ(x) =
∂qF (TF (x))

∂TF
, see Speetjens et al [8].
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3 Control strategy

In this section the control strategy for stabilisation of the pool boiling system is
discussed. The intended control strategy is a feedback law, based on the deviation
of the internal temperature excess of the heater from its equilibrium, i.e. v(x, y, t).
Furthermore, the aim is to control the pool-boiling system using an uniform heat
supply. Hence, it must be a scalar. This results in the following feedback law

u(t) =

D∫
0

1∫
0

v(x, y, t)g(x, y)dxdy, (9)

where g(x, y) is a feedback weight function with which the properties of the
feedback law will be prescribed. Furthermore, the temperature inside the heater
v(x, y, t) is expressed in a form that is intimately related to its natural eigenmodes,
which are the eigenmodes of the Laplace operator. This means that in x-direction,
the eigenmodes of the Laplace operator are taken to represent the profile. In x-
direction the profile thus is represented by a Fourier-cosine expansion. Hence, the
boundary conditions on x = 0, 1 are automatically fulfilled by this expansion. In
y-direction the profile is expressed in the non-periodic variant of this expansion,
i.e. the Chebyshev expansion. The temperature profile is thus given by

v(x, y, t) =
∞∑

k=0

∞∑
n=0

ṽnk(t)φn(θ(y)) cos(kπx), (10)

where φn(θ) = cos(n arccos(θ)) is the nth Chebyshev polynomial and θ =
2
Dy − 1 is the computational domain, cf. Canuto et al [9]. Note that here an infi-
nite series is considered, meaning no approximation error is introduced in this
step. Furthermore, if a smooth temperature field in the heater is assumed, due
to exponential convergence of the Chebyshev-Fourier-cosine spectral coefficients,
the dynamics of the system are mainly prescribed by the ‘lower order’ modes, i.e.
modes with low n and low k. As a result, the feedback law given by eqn. (9) only
needs to be based on the ‘lower’ modes, as established in van Gils et al [7].

In order to filter these specific modes from the profile v(x, y, t), the feedback
weight function g(x, y) is taken as

g(x, y) =
∞∑

q=0

∞∑
p=0

g̃qp cos(q arccos(θ(y)))wC(θ(y)) cos(pπx)wF (x), (11)

where wC(θ) = (1 − θ2)−
1
2 the orthogonal weight function of the Chebyshev

polynomials, wF (x) = 1 the orthogonal weight function of the Fourier-cosine
polynomials, cf. Canuto et al [9] and g̃qp the spectral coefficients of the weight
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function. Due to the orthogonality property of the Chebyshev and Fourier polyno-
mials, implementing eqn. (10) and eqn. (11) in eqn. (9) reduces the feedback law
to

u(t) =
D

2

∞∑
q=0

∞∑
p=0

ṽqp(t)g̃qpC̄qC̃p =
∞∑

q=0

∞∑
p=0

ṽqp(t)kqp, (12)

where kqp = D
2 C̄qC̃pg̃qp and the factors C̄i =

∫ 1

−1
φ2

n(θ)wC(θ)dθ and C̃i =∫ 1

0
cos2(kπx)wF (x)dx are given in Canuto et al [9]. Hence, this enables control of

individual Chebyshev-Fourier-cosine modes by appropriate choice of k qp. This so-
called modal control scheme thus enables efficient control of exactly the relevant
lower order modes.

The elements kqp must be determined such that the closed-loop poles lie at
desired/satisfactory locations. To determine these closed-loop poles, a characteris-
tic equation is derived analogously to the derivation of eqn. (5). The closed-loop
poles of the system are given by the λ ∈ � that satisfy

∞∑
k=0

Ak cos(kπx)
[√

αk sinh(
√

αkD) +
Π2

Λ
γ(x) cosh(

√
αkD)

]
+

[
Π2

Λ
γ(x) −√

α0

] 1
Λ

∞∑
k=0

∞∑
q=0

kqkξk
q Ak

√
α0 − 1

Λ

∞∑
q=0

kq0ζ
−
q

e−
√

α0D = 0, ∀ x ∈ [0, 1],

(13)

for nontrivial Ak (i.e. Ak �= 0 ∀k). The parameter αk is given by

αk = (kπ)2 +
λ

κ
. (14)

Furthermore, (A0 · · ·A∞) is the spectrum of the eigenmode of the closed-loop
system that corresponds to the computed pole λ. The coefficients ξ k and ζ− are
the spectral coefficients of the Chebyshev expansion of cosh

(√
αk

D
2 (θ + 1)

)
and

e
√

α0
D
2 (θ+1), respectively. Approximations to the poles of the closed-loop system

can be found via discretisation of eqn. (13) by the method according to Speetjens
et al [8].

Using this equation the closed-loop poles for a specific feedback law, i.e. with
the elements knk given, can be determined. By varying one of the elements of the
feedback law, e.g. k0,0, the poles will move away from their original position. By
plotting the path the dominant poles describe as function of the controller element,
a pole-trajectory plot can be obtained. Note, that the dominant poles in the open-
loop case not necessarily are dominant poles in the closed-loop case. Therefore, it
must be monitored whether there are poles that move towards the right half plane
and in that way become dominant closed-loop poles. Using the pole-trajectory
plots, controllers that result in satisfying closed-loop behaviour are designed.
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4 Simulations

As is mentioned in the previous section, the system linearised around the hetero-
geneous equilibrium will be stabilised by means of a linear state feedback based
on the dominant modes of the temperature profile. Important to note here is that
these spatially varying equilibria are stabilised using a spatially constant input.

Whether the controller, designed using the linearised system, can handle the
nonlinearity of the pool boiling model is examined in this section. Since the lin-
earised system is stabilised, the nonlinear system should at least be stabilised for
small deviations around the equilibrium. However, the size of the so-called region
of attraction, in which initial conditions still evolve asymptotically to the equi-
librium, is not known a priori. In the following it is shown that the initial offsets
during simulations can be taken quite large, implying a relatively large region of
attraction.

In this section the evolution of the fluid-heater interface temperature during sim-
ulations of the closed-loop pool-boiling system is given. For the numerical simu-
lations, the spatial discretisation of eqn. (1) and eqn. (2) is used. The discretisa-
tion is performed by a spectral method based on the Chebyshev-Fourier-cosine
expansion, given in eqn. (10). The boundary conditions on y = 0 and y = D are
implemented by the tau-method. Finally, the time discretisation is done using a
second-order Cranck-Nicholson time-marching scheme, see Canuto et al [9] and
van Gils et al [7]. Each Fourier-mode is solved individually. However, as a result
of the spatial dependence of the nonlinear Neumann boundary condition on top of
the heater, the Fourier modes are coupled by this boundary condition. This spatial
dependence is treated by the Picard iteration scheme, Kreyszig [10].

Simulations are done for systems which have an initial offset from the to-be-
stabilised equilibrium. The initial profiles are generated in a similar way as is done
in van Gils et al [7]. This means a perturbed Chebyshev-Fourier-cosine spectrum
of one of the systems equilibria, serves as initial condition for the simulations. The
perturbation consists of a super imposed offset ∆T = εn, with n an exponentially-
decaying Gaussian noise vector with mean zero and covariance 0.5, so as to obtain
a smooth initial temperature profile. The coefficient ε determines the magnitude of
the initial deviation.

4.1 Stabilisation of the heterogeneous equilibrium

The methodology described in the previous section is applied to design stabilis-
ing controllers for the heterogeneous equilibrium, shown in Figure 2. Modal con-
trollers that regulate only the zero-th Chebyshev-Fourier-cosinemode, i.e. g̃ 0,0 �= 0
and the first Chebyshev, zero-th Fourier-cosine mode, i.e. g̃ 1,0 �= 0 are considered.
Hence, g̃0,0 �= 0, g̃1,0 �= 0 and all other controller elements equal zero. Satisfactory
gain values are found via pole trajectory plots. The values

k0,0 = −2, k1,0 = −3, (15)
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Figure 3: Dominant poles of the closed-loop system.

are used in these simulations, since for these parameters the dominant closed-loop
poles lie furthest away from the imaginary axis (if only this g̃ 0,0 and g̃1,0 are taken
nonzero). The dominant closed-loop poles of the linearised system are given in
Figure 3.

In Figure 4(a) and (b) the simulation of the nonlinear and linear system are
shown, respectively. The initial condition in these simulations have a deviation
from the heterogeneous equilibria of ε = 10−0.7. The evolution of the fluid-heater
interface temperature is shown. The horizontal lines represent the three homoge-
neous equilibria. Furthermore, the dashed non-uniform line is the heterogeneous
equilibrium and the dash-dotted line is its conjugate state. As can be seen, although
the initial deviations from the equilibrium are quite large, the nonlinear system still
is stabilised by the linear controller. Here in both simulations the state evolves to
the heterogeneous equilibrium. Whether the system evolves to the actual solution
or its conjugate solution, can not be influenced by the controller, it depends solely
on the initial temperature profile of the heater as will be shown in the following.
Important to notice is that this non-uniform equilibrium is stabilised by a uniform
adjustable heat supply at the bottom of the heater.

In Figure 4(c) the mean interface temperature of the linear and nonlinear system
is given as function of time. As can be seen the mean temperature oscillates to
its setpoint. This is the result of the complex poles shown in Figure 3. This is
observed in Figure 4(d) as well, where the input is given as function of time for
both the linear and nonlinear system.

Simulations with the stable film boiling equilibrium as initial condition are also
performed. Here a deviation of magnitude ε = 10−3 is added. The evolution plot
for the nonlinear and the linear simulation is shown in Figure 5(a) and (b), respec-
tively. As can be seen the nonlinear system converges to the conjugate state. This is
due to the initial deviation between the state and the equilibrium. The initial fluc-
tuations are amplified by the nonlinear boundary condition on the top of the heater.
If the mean error between the initial profile and the homogeneous equilibrium is
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Figure 4: Nonlinear and linear results. Evolution of fluid-heater interface temper-
ature of the nonlinear (a) and linear (b) system. Mean fluid-heater inter-
face temperature as function of time (c) and the input as function of
time (d).

larger for x ∈ [0, 0.5] than for x ∈ [0.5, 1], the temperature profile will evolve to
the conjugate equilibrium. Vice versa, the temperature profile will evolve to the
actual equilibrium.

In the simulation of the linear system, the fluid-heater interface temperature
does not evolve to the conjugate equilibrium, since the heterogeneous equilibria
are solutions of the nonlinear system and their conjugate solution does not exist
in the linear system (linear systems always have only one equilibrium). This thus
is an example where the linear system can not describe the nonlinear system any-
more. Nevertheless, the linear controller manages to stabilise the heterogeneous
equilibrium. Conversely, analysis of the linearised system yields the controller
with elements as in eqn. (15) by which the nonlinear system can be stabilised.
Moreover, the applied heat supply at the bottom of the heater is uniform in x and
y direction. The heterogeneity thus is solely the result of the nonlinear Neumann
boundary condition at the fluid-heater interface.
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Figure 5: Evolution of fluid-heater interface temperature.

5 Conclusions

In this study a 2D nonlinear heat-transfer model for pool-boiling systems is consid-
ered. The model involves only the temperature distribution within the heater and
models the heat exchange with the boiling medium via a nonlinear boundary con-
dition imposed at the fluid-heater interface. This compact model is employed for
the design and analysis of a robust control strategy for the stabilisation of unstable
transition boiling states. To this end a controller is introduced that regulates the
heat supply as a function of the internal state. Previous analysis have shown that
controllers based on the dominant modes of the spatial discretisation of the temper-
ature profile within the heater are effective, see van Gils et al [7]. For this reason
the controller developed to be applied to this system is based on these modes as
well.

The control strategy filters the Chebyshev-Fourier-cosine modes of the tem-
perature profile. Due to the structure of the heater-only model, these modes are
intimately related to the eigenmodes of the system. Therefore, the dynamics are
mainly prescribed by the dominant modes, that is, the lower order Chebyshev-
Fourier-cosine modes. The feedback law thus enables control of exactly those rel-
evant lower order modes.

Satisfactory closed-loop behaviour is obtained by fine-tuning of the control
parameters. This is done by means of pole trajectory plots. These plots show the
path the closed-loop poles describe as function of a control parameter. Closed-loop
poles are found by solving a characteristic equation found by direct analysis of the
heater-only model, using the method of separation of variables.

The performance of the control law for stabilisation of the nonlinear system is
investigated in order to establish its value for practical purposes. Relevant issues
are the asymptotic stability and evolution of the nonlinear closed-loop system.
Simulations of the evolution of the nonlinear system reveal convergence on the
unstable steady state for a wide range of initial states. These findings imply that
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the control loop indeed is capable of robustly stabilising the pool-boiling system.
Especially the fact that non-uniform equilibria are stabilised here by means of an
uniform input must be emphasised. Even when the initial condition is almost uni-
form in x-direction, the feedback law manages to bring the system to the non-
uniform solution. Here the heterogeneity is solely introduced by the nonlinear
Neumann condition on the fluid-heater interface.
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