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Abstract 

Thermo-economic optimization has to be carried out for an irreversible solar 
driven heat engine using finite-time/finite-size thermodynamic theory. In the 
considered heat engine model, heat transfer from the hot reservoir is assumed to 
be radiation mode and the heat transfer to the cold reservoir is assumed to be 
convection mode. The power output per unit total cost is taken as the objective 
function. The steps of problem formulation are rightly performed and all valid 
assumptions are taken into consideration. The effects of the irreversibility 
parameter, economical parameter and the design parameters on the            
thermo-economic objective function have been investigated. 
Keywords: finite-time/finite-size thermodynamics, irreversible, solar-driven heat 
engine, thermoeconomic optimization. 

1 Introduction 

India is endowed with abundant solar energy for about 70% of the yearly period. 
Solar driven heat engine systems, which consist of a solar collector and a heat 
engine, have a large potential for saving fossil fuel and decreasing environmental 
pollution. The schematic diagram of a solar driven heat engine is shown in fig.1. 
The energy from solar radiation is collected and utilized to generate steam to run 
turbines. As temperature required for steam generation is considerably high 
(200˚C), for obtaining reasonably high efficiencies, concentration type of 
collectors are used when steam is used as working fluid. 
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Figure 1: Schematic diagram of an irreversible solar driven heat engine. 

2 Literature review 

Power optimization studies of heat engines using finite time thermodynamics 
were started by Chambadal [1] and Novikov [2] and were continued by Curzon 
and Ahlborn [3]. The upper bound on the efficiency of a reversible engine is the 
so-called Carnot efficiency that is given by 

 
     Firstly, Curzon and Ahlborn [3] studied the performance of an endoreversible 
Carnot heat engine at maximum power output. Using convective type linear heat 
transfer processes through finite temperature difference in both the hot and cold 
reservoirs, they showed that an upper limit to the endoreversible engine 
efficiency is 

 
     The study of irreversible thermodynamic cycles has been undertaken by many 
researchers after Curzon and Ahlborn’s work. Sahin et al. [4] studied the 
efficiency of a Joule-Brayton engine at maximum power density with 
consideration of engine size. Their results show that the efficiency at maximum 
power density is always greater than that presented by Curzon and Ahlborn [3]. 
The principle of operation of a solar thermal power plant is presented by 
Lund [5] in terms of finite heat transfer rates and an internally reversible heat 
engine by presenting some parametric equations. Medina et al. [6] extended the 
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work of Sahin et al. [4] to a regenerative Joule–Brayton cycle where the optimal 
operating conditions at the engine were expressed in terms of the compressor and 
turbine isentropic efficiencies and of the heat exchanger efficiency. Many 
authors investigated the effects of radiative heat transfer law on the performance 
of heat engines. Jeter [7], De Vos and Pauwels [8] applied the Stefan–Boltzmann 
thermal radiation law to the performance analysis of solar powered energy 
systems. De Vos [9], Chen and Yan [10] and Gordon [11] discussed the effect of 
a class of heat transfer laws (linear and non-linear radiation) on the performance 
of endoreversible cycles. They revealed the dependence of performance on the 
heat-transfer law and the heat-transfer coefficient and derived a universal 
expression for different common heat transfer laws and concluded that the value 
of maximum power depends on both the source temperatures and the heat-
transfer coefficient. Gordon [12] illustrated that the optimal operating 
temperature for solar-driven heat engines and solar collectors is relatively 
insensitive to the engine design point. Bejan [13, 14] performed a power 
optimization study for a solar driven power plant model. He examined the 
optimal design parameters and optimal distribution of the heat transfer areas at 
maximum power output conditions. In recent years, the performance of a solar 
driven heat engine using the technique of finite time thermodynamic analysis has 
been investigated. In these studies, the objective functions chosen for 
optimization are usually power output. Chen [15] investigated the optimal 
performance and design parameters for solar driven heat engine consisting of a 
solar collector and a heat engine. In the study, he determined the optimum 
operating temperatures of the working fluid and solar collector. Goktun et al. 
[16] investigated the design parameters of an endoreversible radiative heat 
engine at maximum power output conditions. As a major result, they showed that 
the ratio of the cold to the hot reservoir temperature must be less than 0.2 for an 
optimal design. The work carried out by Goktun et al. [16] for an endoreversible 
radiative heat engine model has been extended to an irreversible radiative heat 
engine model by Ozkaynak [17]. He obtained the design parameters at maximum 
power output for radiative and convective boundary conditions. He also 
discussed the effects of internal and external irreversibility parameters on the 
maximum power output and thermal efficiency at maximum power conditions. 
Badescu [18] proposed a model of a space power station composed of an 
endoreversible Carnot heat engine driven by solar energy. He obtained the 
maximum power output and the optimum ratio between the solar collector and 
radiator areas. Erbay and Yavuz [19] performed an analysis of an endoreversible 
Carnot heat engine with the consideration of combined radiation and convection 
heat transfer between the working fluid and hot and cold heat reservoirs. They 
showed that the power output is strongly dependent on the temperature and 
emittance ratios of the heat reservoirs. Badescu et al. [20] performed a power 
optimization for solar driven endoreversible Carnot heat engine model. They 
obtained optimum solar collector surface area and temperature under maximum 
power conditions. Sahin [21] carried out optimization study based on maximum 
power criterion for an endoreversible solar driven heat engine with radiation 
mode heat transfer from the hot reservoir and convection mode to the cold 
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reservoir. He also developed his model in [21] by considering the collective role 
of radiation and convection heat transfer from hot reservoir [22]. In these studies, 
he investigated the optimal working fluid temperatures and the thermal 
efficiency at maximum power conditions. He also discussed the effects of the 
ratios of the reservoir temperatures and the heat transfer coefficients on the 
optimal performances. Koyun [23] carried out a comparative performance 
analysis based on maximum power and maximum power density criteria for a 
solar-driven heat engine with external irreversibilities. He compared the optimal 
performances and design parameters at the maximum power and power density 
conditions. Sahin and Kodal [24] have recently reported a new performance 
analysis based on an objective function defined as the power output per unit total 
cost. Using this performance optimization criterion, they performed a finite-time 
thermoeconomic optimization for endoreversible [24] and irreversible [25] heat 
engines with linear heat transfer modes. They investigated the optimal 
performances and design parameters under the maximum thermoeconomic 
objective function conditions and then they examined the effects of technical and 
economical parameters on the global and optimal performances. Sahin et al. [27] 
have recently carried out thermoeconomic optimization for an endoreversible 
solar driven heat engine using finite time/finite size thermodynamic theory. They 
investigated the effects of the technical and economical parameters on the 
thermoeconomic performances. In this paper, the finite-time thermoeconomic 
optimization technique introduced by Kodal and Sahin [25] for an irreversible 
heat engine model with linear heat transfer modes has been applied to a solar 
driven irreversible heat engine model to perform thermo-economic optimization. 

3 Aim of the work 

The aim of this work is to perform thermo-economic optimization of an 
irreversible solar driven heat engine using finite-time thermodynamics. 

3.1 Theoretical model  

Solar powered heat engine is considered to operate according to the Rankine 
cycle given in Fig. 2. The considered Rankine cycle operates between a heat 
source of temperature TH and a heat sink of temperature TL. In order to simplify 
the analysis, the Rankine cycle (1-2-3-4-5-1) can be modified by using an 
entropic average temperature defined by Khaliq [26] to a Carnot cycle (1-a-b-5-
1). Since the area under the process 2-3-4 in the T-S diagram of Fig. 2 represents 
the amount of heat added to the Rankine cycle, we can make this area equal to 
the area under the horizontal line with an entropic average temperature of heat 
addition. The entropic average temperature can be written as, 

)()( 2424 sshhsQTX −−=∆∆=  
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Figure 2: The components of a solar driven heat engine and its T-S diagram. 

4 Problem formulation 

The irreversible Carnot-type solar driven heat engine operating between 
temperature limits (TH and TL) is shown in fig.3.  
 

 
Figure 3: T-S diagram of a Carnot-type solar driven heat engine. 

      Heat transfer from the hot reservoir is assumed to be radiation dominated and 
the heat flow rate QH from the hot reservoir to the heat engine can be written as 

                                          ( )44
XHHHH TTAUQ −=

•

                                      (1) 
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where AH is the heat transfer area of the hot side heat exchanger. UH is the hot 
side heat transfer coefficient. On the other hand, convection heat transfer is 
assumed to be the main mode of heat transfer to the low temperature reservoir 
and therefore the heat flow rate QL from the heat engine to the cold reservoir can 
be written as                     

                                           ( )LYLLL TTAUQ −=
•

                                         (2) 

where UL is the cold side heat transfer coefficient and AL is the heat transfer area 
of the cold side heat exchanger. From the first law of the thermodynamics the net 
power output of the solar driven heat engine is 

                                            LH QQW
•••

−=                                               (3) 

     Using eqns (1) and (2) in (3), we get  
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where µ is the product of ratio of heat transfer areas (R) and the heat 
conductance parameter (δ) and is defined as                        

                          µ = R×δ                                                                                    (5) 

and 

                   R=AH/AL                                                                                     (6)  

  and                         

3
H

L
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U
U

=δ                       
                                                        (7) 

    From the second law of thermodynamics for an irreversible cycle, the change 
in the entropies of the working fluid for heat addition and heat removing 
processes yields, 

                     0<−=

•••

∫
Y

L

X

H

T
Q

T
Q

T
Qδ

                                       (8) 

    One can rewrite the inequality in eqn (8) as 
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where I is irreversibility parameter. 
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     With the above definition I becomes 
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    From eqns (1), (2) and (9), we get                                       
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     The thermal efficiency of the irreversible heat engine is    

                           
X
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     In thermoeconomic analysis, an objective function is defined as power output 
per unit total cost in order to account for both investment and fuel costs. In this 
study, the objective function has been defined as the power output per unit 
investment cost due to no fuel consumption cost in a solar driven heat engine. In 
order to optimize power output per unit total cost, the objective function is 
defined as 

                                 F=W/Ci                                                  (13) 

where Ci refers to annual investment cost. The investment cost of the plant is 
assumed to be proportional to the size of the plant. The size of the plant can be 
taken proportional to the total heat transfer area. Thus, the annual investment 
cost of the system can be given as 

                               ( )LHi lAhAC +=                                        (14) 

where the investment cost proportionality coefficients for hot and cold sides h 
and l are equal to the capital recovery factor times investment cost per unit heat 
transfer area. Substituting eqns (4) and (14) into eqn (13), we obtain 
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where k is relative investment cost parameter of the hot side heat exchanger and 
defined as 
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                                ( )lhhk +=                                               (16) 

Dimensionless thermo economic objective function is defined as 

                   )( LLTUlFF =                                           (17) 
Dimensionless power output is defined as 

                               ( )LLL TAUWW
••

=                                        (18) 

Using eqn (15) in (17), we get 
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 Using eqn (4) in (18), we get                                    
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Using eqn (11) in (12), we get 
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Putting HX TT=θ and LH TT=τ in eqn (19), (20) and (21) we get 
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    To maximize the dimensionless thermoeconomic objective function, eqn (22) 
is differentiated with respect to θ and the resulting derivative is equated to zero. 
After a lengthy calculation, it is found that the optimum value of θ must satisfy 
the following equation 
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(a) 

 
(b) 

Figure 4: Variation of the maximum thermoeconomic objective function with 
respect to R for various (a) δ values (I=0.8, k=0.8, τ=5) (b) k values 
(I=0.8, τ=5, δ=2) (c) τ values (I=0.8, δ=2, k=0.8) (d) I values (τ=5, 
δ=2, k=0.4). 
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(c) 

 

 
(d) 

 
Figure 4: Continued. 
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( ) 04384884 32452728112 =−++−+−+ IIIII τθµθµτθττθµθµττθµ  

                                                                                                  (25) 

 Solution of eqn (25) can be done numerically.  

5 Results and discussion 

The variations of maximum thermoeconomic objective function with respect to 
different technical and economical parameters are shown in figure 4.From the 
figures, it is clear that the optimal value of ratio of heat transfer areas(R) for 
which the maximum value of thermo-economic objective function becomes 
maximum depends on δ, k, I and τ parameters. It is seen from figure 4(a) that the 
optimal value of ratio of heat transfer areas (R) decreases with increase in the 
value of heat conductance parameter (δ). Also with increase in the value of δ, the 
optimal value of objective function also increases. On increasing the value of δ 
beyond unity, the optimal objective function increases sharply for R lying      
below 1. 
     From figure 4(b), it can be observed that the optimal value of ratio of heat 
transfer areas (R) decreases with increase in the value of economical parameter 
(k). Also the optimal value of objective function decreases with increase in the 
value of k. 
     From figure 4(c), it is seen that the maximum value of thermoeconomic 
objective function increases sharply with increase in the value of τ for the value 
of R lying below 0.5.Also the optimal value of R is not get affected with increase 
in the value of τ. 
     From figure 4(d), it observed that the optimal value of R decreases slightly 
with decreasing I. Also there is severe fall in the value of maximum objective 
function with slight decrease in the value of I. Also the optimal value R lies 
below unity. 

6 Conclusion 

A thermo-economic optimization has been carried out for an irreversible solar 
driven heat engine. The objective function has been defined as the ratio of power 
output to the total investment cost for setting up the plant. The effects of 
irreversibility parameter, economical parameter and the design parameters on the 
thermo-economic objective function have been investigated. By optimizing the 
objective function the optimum ranges for various parameters have been 
determined. 
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