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Abstract 
The conservative averaging method was developed as an approximate analytical 
and/or numerical method for solving partial differential equation or its system 
with piece-wise constant (continuous) coefficients. The usage of this 
approximate method for separate relatively thin sub-domain or/and for sub-
domain with al large heat conduction coefficient leads to a reduction of domain 
in which the solution must be found. To apply this method for all sub-domains of 
layered media, a special type of spline was constructed: the integral averaged 
values interpolating parabolic spline. The usage of this spline allows diminishing 
the dimensions of initial problem per one. It is important that in all cases the 
original problem with discontinuous coefficients from Rn+1 transforms to 
problem with continuous coefficients in Rn. A method of conservative averaging 
for ill-posed inverse problems in some cases allows transforming them to well-
posed inverse problems. 
Keywords: heat transfer, piecewise constant (continuous) coefficients, 
conservative averaging, non-classical conditions, integral spline, mesh 
(dimension) reduction, direct problem, inverse problem. 

1 Introduction 

By modeling practically interesting processes, e.g. heat transfer processes in   
non-homogeneous media, very often we need to consider the situation, when the 
medium has an organized structure, i.e. it is not fully chaotic. For example it 
often has a layered structure. In addition some of these layers are relatively thin 
in comparison with adjacent layers and have strongly different physical 
properties. 
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     Mathematically speaking such a situation can be described by a partial 
differential equation (or its system) with piecewise constant/continuous 
coefficients, i.e. the domain in which the solution is defined, consists of several 
sub-domains. In each sub-domain the solution of the partial differential equation 
can be considered in the classical sense: the solution has continuous all highest 
partial derivations into the sub-domain. But it is not true on the contact surfaces 
S  of adjacent layers: on these surfaces special additional conditions, which in 
the literature are often called conjugation or junction conditions, have been 

formulated: [ ] 0, 0TT k
n

∂ = = ∂ 
. Here [ ] S S

T T T+ −= − is the difference 

of one-sided limit values (jump) of function T on surface S. In the case of      
non-ideal contact one of the conditions is the continuity of heat flux (energy 
conservation). The second junction or conjugation condition is usually written 
without detailed deduction. E.g., [1] mentions “temperature has discontinuity 
when passing through the boundary of non-ideal contact, with the height of the 
step being proportional to the heat flow, i.e. 

[ ] , ( , , ) ,k TT x y z S
nα

∂
= ∈

∂
    (1) 

where the coefficient of contact heat transfer α  is associated with the contact 
conditions”. Similarly, in [1] the so-called “concentrated heat capacity” 
condition relation on the surface S  is written as follows 

                                        s
T Tk c
n t

ρ∂ ∂  = ∂ ∂ 
.                                           (2) 

Additionally, it commented that:  “ sc is the lumped heat capacity of the contact”. 
     In this paper we will show how these and other conditions and their 
generalizations can be obtained by our original method of conservative averaging 
(CAM) [2, 3]. This approach allows us to eliminate some separate sub-domains 
and reduce partial differential equations for these sub-domains to boundary 
conditions. This means that we reduce the definitions domain of problem for its 
analytical or numerical solution [4]. This means we can consider this approach 
using the mesh reduction method. To apply CAM procedure for several layers, it 
was necessary to construct a special type of spline: the integral averaged values 
interpolating parabolic spline [5]. In [6] such an approximation for convection-
conduction heat transfer in a layered system was demonstrated. For the 
approximation of boundary layers we introduced rational spline [7] and in [8] we 
showed its effectiveness.  It is important that in all the cases the original problem 
with discontinuous coefficients transforms from problem a in Rn+1 to problem a 
in Rn with continuous coefficients. This method for ill-posed inverse problems in 
some cases allows transforming them to well-posed inverse problems, 
e.g. [9, 10]. 
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2 The conservative averaging method for separate boundary 
sub-domain 

Let us assume that in suitable Cartesian coordinates , nx R y R∈ ∈ the domain 

of definition 1nD R +⊂  of the solution is represented as consisting of two   

sub-domains: 0D G G= ∪ . Here the finite or infinite sub-domain G has form 

{ }( , ) (0, ( )), ( )G x y x y y x= ∈ ∆ ∈Γ and the second sub-domain 

{ }0 0( , ) ( ,0),G x y x yδ= ∈ − ∈Γ is a cylinder of finite heightδ . The base of 

the cylinder 0
nRΓ ∈  is the bounded/unbounded domain in nR  under the 

condition 0 (0)Γ ⊆ Γ . The differential equation in 0G  has the form: 

0
0 0 0 0( ) ( , ),Uk L U F x y

x x
∂∂   + = − ∂ ∂ 

  (3) 

where 0L is the linear differential operator with respect to the argument y and 

coefficient 0 0 ( )k k y= . The differential equation in G has a similar form: 

( ) ( , )Uk L U F x y
x x
∂ ∂  + = − ∂ ∂ 

,          (4) 

but the operator L  with respect to the vector argument y  now in the general 
case can be non-linear and the heat conduction coefficient is ( , )k k x y= . It 
should be mentioned that one of the y  vector components may be time t , thus 
the equations (3) and (4) allow describing both the steady-state and transient 
processes. Let us denote by 0

+Γ the part of the hyper-plane 0x = : 

0 0G G+Γ = ∩ . On this surface the conjugations conditions must be fulfilled:  

         0 0 0
,

x x
U U

=− =+
=

 
   (5) 

                                          0
0

00 xx

U Uk k
x x =+=−

∂ ∂
=

∂ ∂
 (6) 

On the second base { }0 0,x yδ−Γ = = − ∈Γ  of the cylinder, a typical boundary 
conditions for the heat transfer processes is given (we will specify it later). On 
the other hand we will not specify the conditions of the remaining parts of both 
sub-domains, because their form is not substantial for the description of the 
method.  
     We assume that the original problem (3)–(6) with all the necessary boundary 
or/and initial conditions have a unique and stable solution. In particular it should 
be emphasized that under the solution of this problem we imply a solution in a 
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slightly revised classical sense: 1) it is continuous in closure of definition 
domain D ; 2) the solution has all necessary continuous highest derivations in 
open sub-domains 0G and G ; 3) the first derivative with respect to argument x  
of the solution has bounded one-sided limit values which fulfil the second 
junction condition (6) on surface  0

+Γ ; 4) it fulfils all additional conditions on 
boundary of definition domain. 
     We start the description of the CAM by introducing the integral averaged 
value of the function 0 ( , )U x y  of the solution of the problem (3)–(6) on 0G : 

                          
0

1
0 0( ) ( , )u y U x y dx

δ

δ −

−

= ∫ .  (7) 

     The integration of the differential equation (3) over the interval 
( ,0)x δ∈ − and the utilization of second junction condition give us the basic 

relation   

           0
0 0 0 0

0

( ) ( )
x x

Uuk k L u f y
x x δ

δ δ
=+ =−

∂∂
− + = −

∂ ∂
.  (8) 

Firstly, we denote the solution on sub-domain G by ( , )u x y  instead of the 
function ( , )U x y because the solution of the new statement of the problem in 

general will differ from initial solution. Secondly, we denote by 0 ( )f y  

according to (7) the averaged value of source function 0 ( , )F x y . A further 
transformation of the basic relation (8) depends on the type of boundary 
conditions on 0

−Γ . We will consider the boundary condition of second type (other 
types of boundary condition were considered in [2, 3]): 

                                       00
0 ( )

x

Uk y
x δ

ϕ
=−

∂
− =

∂
.  (9) 

     Assuming the linear approximation for solution 0 ( , )U x y for each fixed 
y (nevertheless it may be different for various y !) we easily find the 

representation for 0 ( )u y by means of the junction condition (5) and condition 
(9): 

0

0
0

( )( ) (0, )
2 ( )

yu y u y
k y

δ ϕ
= + . 

It remains to then insert this expression in (8), to use boundary condition (9) and 
we have obtained the non-classical boundary condition on boundary 0

+Γ :  
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2 0

0
0 0 0

0

( ) ( ) ( ) ( )
2

uk L u y f y L
x k

δ ϕδ ϕ δ
 ∂

+ = − + + ∂  
  (10) 

for the solution ( , )u x y of the equation (4) on the reduced domain G :  

                                 ( ) ( , )uk L u F x y
x x
∂ ∂  + = − ∂ ∂ 

.  (11) 

Of course all additional conditions of the original problem on the remaining part 
of boundary of domain G  must be added to main differential equation (11) and 
new boundary condition (10) on the surface 0

+Γ . When this new problem is 

solved it is easy to obtain a posteriori error estimation 0 ( , )U x y∆  for the 

linearly approximate (relatively to x ) solution 0 ( , )U x y  in following form:  

0
0

0
0 2

0 0 0 0
0

( , )

(0, ) ( ) ( ) ( ) ( )
2 2

x
U x y

k

u yk y L u L f y
x k

δ δ ϕϕ δ

∆ ≤ ×

 ∂ × + + + +  ∂   

 

     We can increase the order of approximation for solution 0 ( , )U x y  up to two 
by means of both junction conditions and condition (9). We get the 
representation: 

      
2 0

0
0 0

(0, ) ( )( , ) (0, ) (1 )
2 2

k x u y x yU x y u y x
k x k

ϕ
δ δ

∂
= + + +

∂
.  (12) 

We obtain from (12) following expression for the averaged integral value of the 
function 0 ( , )U x y : 

              
0

0
0

( ) (0, )( ) (0, )
3 2

y u yu y u y k
k x
δ ϕ ∂

= + − ∂ 
.  (13) 

This means that the new boundary condition on surface 0
+Γ consists of two 

equations. One of them is a consequence of equation (8): 

                0
0 0 0

0

( ) ( ) ( )
x

uk L u y f y
x

δ ϕ δ
=+

∂  + = − + ∂
,  (14) 

the second one is expression (13). These two equations allow finding two 
unknown functions 0 ( )u y and (0, )u y  on the boundary 0

+Γ . So the new 
problem consists of the main differential equation (11) together with a system of 
two non-standard boundary conditions (13), (14). The definition domain for the 

Advanced Computational Methods in Heat Transfer IX  315

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 53,
 www.witpress.com, ISSN 1743-3533 (on-line) 



function ( , )u x y is sub-domain G ; the function 0 ( )u y is given only on the 

surface 0
+Γ . 

     So the CAM in this situation can be interpreted as the mesh reduction method. 
We finish this part of paper with some remarks. Quite often after the application 
of CAM with piecewise constant coefficients it is possible to solve the problem 
analytically. Our experience concerning the numerical methods for other 
problems with non-classical boundary conditions is as follows. Firstly, we have 
solved a large number of important practical problems (mostly by the method of 
finite difference). Secondly, in practice and in theory the stability criterion for 
classical boundary condition (9) is more stiff than for the non-classical boundary 
condition (10) (or for the system (13) and (14)). Unfortunately still we haven’t 
succeeded in proving the solvability of problems with non-classical additional 
conditions in general (for general operators 0L and L  ).  

3 The conservative averaging method for separate inner        
sub-domain (layer) 

Now we will consider the definition domain D which consists of three         

sub-domains: 0 1D G G G= ∪ ∪ , where finite or infinite sub-domain 1G has 

the form { }1 1 1( , ) ( ( ), ), ( )G x y x y y xδ= ∈ −∆ − ∈Γ . We add to equations 

(3) and (4) in sub-domain 1G  equation  

            1
1 1 1 1( ) ( , )Uk L U F x y

x x
∂∂   + = − ∂ ∂ 

    (15) 

and to conditions (5) and (6) add further junction conditions on surface 0
−Γ : 

            1 00 0
,

x x
U U

δ δ=− − =− +
=  01

1 0
0 0x x

UUk k
x xδ δ=− − =− +

∂∂
=

∂ ∂
.  (16) 

The basic relation for this problem looks as follows: 

              0
0 0 0 0

0 0

( ) ( )
x x

uuk k L u f y
x x δ

δ δ
=+ =− +

∂∂
− + = −

∂ ∂
.  (17) 

     To exclude thin interlayer – cylinder 0G  – and to obtain the new               

non-standard junction conditions on surface 0
+Γ we shift the sub-domain 1G to 

the right: x x δ+ and additionally assume the linear approximation for 
solution 0 ( , )U x y for each fixed y .  Then from (6) and (16) immediately 

follows the first junction condition on 0
+Γ : 
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                          1
1

00 xx

u uk k
x x =+=−

∂ ∂
=

∂ ∂
.  (18) 

The second junction condition on 0
+Γ follows from (17) by taking into 

consideration linearity of function 0 ( , )U x y :   

                    [ ]0
0 1 0

0

( ) ( )
2x

kuk u L u u f y
x

δ δ
δ=+

∂
− + + = −

∂
.                   (19) 

If we neglect in (19) both the operator 0L and source term then this condition 
reduces to the non-ideal contact condition. In addition, we have explicated the 
expression for the coefficient of contact heat transfer α  in (1) through physical 

and geometrical properties of the interlayer: 0kα
δ

= . The “concentrated heat 

capacity” condition (2) follows from the basic relation (17) with 

operator 0 0 0L c
t

ρ ∂
=

∂
 , 0 0f ≡  and equality (18). The explicit expression for 

the lumped heat capacity sc  derives from (17) and is as 0sc c δ= . 

4 The coefficient inverse one-dimensional problem for two-
layer system 

One of most popular experimental methods for thermal physical properties of 
homogeneous media (solids, fluids and gases) with low electrical conductivity is 
the transient hot strip (THS) method developed by Gustafsson [11]. 
Mathematically this method was formulated as coefficient inverse heat equation 
with constant coefficients for two-dimensional semi-bounded zone. In our 
publications [9, 10] we generalize this ill-posed problem for two-layers, solving 
it by use of Green’s function and reducing it to a system of two transcendent 
equations. Nevertheless, the numerical solution of system of transcendental 
equations is an ill-posed problem. It would be important to offer some          
well-posed method for finding approximate values for coefficients as initial data 
for the iteration process. In this section we propose such an approach based on 
conservative averaging. The one-dimensional model for the THS method can be 
formulated as follows:  

2
0 0

0 0 0 02 (0), 0 , 0 ,U Uc k f x H t
t x

δ∂ ∂
= + < < <

∂ ∂
  (20) 

2
1 1

1 1 0 0 12 , , 0U Uc k H x H H H t
t x

∂ ∂
= < < + = <

∂ ∂
  (21) 

with homogeneous second type boundary conditions 
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0
0

0

0,
x

Uk
x =

∂
=

∂
 1

1 0
x H

Uk
x =

∂
=

∂
, 

with conjugation conditions 

0 00 0 1 0 ,x H x HU U= − = +=
0 00 0

0 1
0 1x H x H

U Uk k
x x= − = +

∂ ∂
=

∂ ∂
 

and with homogeneous initial conditions 

0 0 1 00, 0t tU U= == = . 
Additional information is given: 

0 0 ( )xU T t= =      (22) 

in the form ( ) , , 0,k k kT t T t k t k N= = ∆ =  with 1N >> . The aim of the 

solution of the inverse problem is to find the unknown constants 0 1,c c  and 

functions 0 ( , )U x t and   1( , )U x t .  

     Let us introduce the integral averaged values of functions 0 ( , )U x t and 

1( , )U x t : 
0

0 0
0 0

1( ) ( , )
H

u t U x t dx
H

= ∫ , 
0

1 1
1

1( ) ( , )
H

H

u t U x t dx
H

= ∫ .  (23) 

     Further, we will approximate both unknown functions 0 ( , ),U x t 1( , )U x t  
according to argument x  with expressions, which fulfil the boundary and 
conjugation conditions and equalities (23). Finally we have: 

0 0 10
0 0

0 1

( , ) ( ) ( ) ( )
2( )

x x
H HeGU x t u t e e e e v t

G G

−
−= − + + −

+
,   (24) 

1 1 11
1 1

0 1

( , ) ( ) ( ) ( )
2( )

x H H x
H HeGU x t u t e e e e v t

G G

− −
−= + + + −

+
,  (25) 

where 0 1( ) ( ) ( ),v t u t u t= − 1, 0,1i i iG H k i−= = . 
     Now we integrate the main equations (20) and (21): 

0

1 0
0 0

0

o
o

x H

du Uc G f
dt x

−

= −

∂
= +

∂
, 

0

11 1
1 1

0x H

du Uc G
dt x

−

= +

∂
=

∂
. 

Finally we receive a system of two ordinary differential equations: 

0 1
0 0 0 1( ) , ( ),du duv t f H v t

dt dt
β α β α= − + =  

with homogeneous initial conditions 0 1( ) ( ) 0u t u t= = .  
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     Here 
2

0 1

1
2( )

e
G G

α −
=

+
 and , 0,1i i ic H iβ = = . The solution for ( )v t is: 

( )1 1 1
0 0 0 0 1( ) ( ) 1 , ,tv t f H e γβ γ γ αδ δ β β− − − −= − = = + . 

And the solution for 0 ( )u t : 

( ) ( )1 1 1
0 0 0 0 0 0( ) ( ) 1 1 ( )tu t f H e tγβ β γδ β γ− − − − = − + −  . 

We have from additional information (22): 
1 2 1

0 0 0 0 0 1( ) ( ), 2 ( 2 1) ( )k k kT u t v t e e G G Gα α − −= + = − − + . 
The first finite difference may be written as follows: 

( ) ( )11 1 1
0 0 0 0 0 0( ) ( ( ) ) 1 ( )ktt

kT f H e e tγγβ γ α β δ γ β−−− − − ∆ − ∆ = + − + − ∆ 
and we have similar expression for the second finite difference:  

( ) 1
22 1 1

0 0 0 0 0( ) ( ( ) ) 1 ktt
kT f H e e γγβ γ α β γ −−− − − ∆ ∆ = − + −  

 . 

Finally, we obtain expression for the sum of the unknown coefficients: 
2

1
2

1 ln k

k

T
t T

γ −∆
=
∆ ∆

.      (26) 

Evidently we have found the unique solution of the inverse problem, but it is 
easy to see that solution (26) strongly depends on the errors of the measurements 
and in this sense we have unstable algorithm. But we can propose the 
modification of this algorithm by summing up the sub-sequences of the 
measurement data. 
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