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Abstract 

The paper deals with autowave processes in non-isothermal reacting diffusion 
systems. The mathematical model of heat and mass transfer in a tubular  
through-reactor has been submitted. The model consists of the diffusion-kinetic 
equations for two reagents under the first-order reversible reaction and heat 
transfer equation with allowance for a heat of reaction. Reaction rate constants 
for direct and reverse stages are related to temperature according to the 
Arrhenius law. The cases of both the adiabatic and non-adiabatic reactor have 
been considered. The stationary regimes and conditions of their stability have 
been investigated by methods of hydrodynamic stability theory and numerical 
experiment. As a result, the simultaneous governing transfer parameters 
including thermal, diffusion and kinetic characteristics of both reagents with 
allowance for the two reaction stages were detailed. The existence conditions for 
dissipate structures which can be identified as running circular cells or wave 
fronts have been obtained. Results of the investigations can be applied to 
calculating the heat and mass transfer intensity in chemical reactors and heat 
exchangers.  

1 Introduction 

Studies of autowave processes in chemical systems with diffusion are of great 
interest for scientists and engineers of different specialties now. The problem to 
describe such processes in every details is too complex and far from the 
complete solution. At the same time, the dynamics of dissipate structures has 
been investigated for isothermal multiphase systems sufficiently well [1–4]. 
     But regularities of generating and propagating autowaves in non-isothermal 
systems with chemical reactions accompanied by heat effects have been studied 

Advanced Computational Methods in Heat Transfer IX  181

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 53,
 www.witpress.com, ISSN 1743-3533 (on-line) 
doi:10.2495/HT060181



to an insufficient extent. It is particularly correct in reference to multistage or 
reversible chemical reactions for which we can observe an interaction between 
different trends in the process evolution [5–7]. 
     In the present work an attempt has been to prove the possibility of existence 
and to investigate conditions for arising dissipate structures in the simple case of 
the non-isothermal reversible first-order chemical reaction.  

2 Theoretical details 

Let us consider the chemical conversion which is going on in a tubular      
through-reactor according to the scheme of a reversible first-order reaction:  
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Here 1k  and 2k  are the reaction rate constants for direct and reverse stages.  
     For an adiabatic reactor the system of mass and heat transfer equations reads 
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where XC  , YC  are the concentrations of components X  and Y ; 0XC  is the 
inlet concentration of X; XD , YD  are the diffusion coefficients of reagents; zt   ,  
are the time and space coordinates; j  is the total consumption of reagents 
through the reactor; T  is the temperature; χ  is the average temperature 
conductivity; ρ  is the average density of the reagents mixture; pc  is the 
average specific heat; H∆ is the total heat of the reaction; S is the reactor cross-
section surface.  
     We assume that X is the only inlet reagent, and all parameters and properties 
of reagents are constant except rate coefficients. Such assumption seems to be 
correct by reason of a prevailing strong dependence of rate constants on 
temperature according to the Arrhenius law:  

 
 ( ))(exp 1101 RTEkk −= ,    (5)  
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( ))(exp 2202 RTEkk −= ,    (6) 
where 2010  , kk  are the standard values of the rate constants for direct and reverse 
stages; 21  , EE  are the activating energies for direct and reverse reaction stages; 
R  is the constant of ideal gases.  
     The total heat of the conversion reads  

 
YX CkHCkHH 2211 +=∆ ,    (7) 

  
where 1H  and 2H  are the heats of direct and reverse stages.  
     The suitable variables are given by  
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     Thus instead of (2), (3), (4) we obtain: 
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     As rank of the matrix 







−

−

21

21
kk

kk
 equals 1, the system of (9), (10), (11) has 

a non- trivial fixed points if  
 

 021 =+ HH .     (12) 
 

The condition (12) corresponds with the Hess law.  
     Thus we obtain a balance of fixed concentrations in the system with the ratio: 
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where 0T  is the stationary temperature which depends on initial conditions.  
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     Linearizing the system (9)–(11) in a neighbourhood of the fixed point and 
using the approximation  
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we can write the system of perturbed equations as follows: 
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where 

 0XX CCx −= , 0YY CCy −= , 0TT −=θ .  (18) 
 

     With allowance for (13) we obtain: 
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     Let us look for dissipate structures in the form of running cells [7]: 
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where L  is the characteristic longitudinal scale of reactor; iα  is the amplitude of 
wave structures ; m  is the mode number, λ  is the increment.  
     As a result we obtain the following linear system for perturbations 
amplitudes:  
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     The above system has non-trivial solutions if and only if 
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     Determinant (30) can be exposed in the form:  
 

 0132231321321 =++− KKhK λλλλλλλλλ ,                       (31) 
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     As equation (31) is cubic concerning the increment λ  it certainly has real 
roots.  
     Therefore, existence of space dissipate structures is conditioned either by that 
one real root of the equation (31) equals to zero and real parts of other two roots 
are non-positive (case 1), or by that one real root is negative and other two roots 
are imaginary (case 2). Let’s consider both cases.  

2.1 Case 1  

From the condition for the real root it follows: 
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     It is obvious that (35) can be realized only if 01 <H (i.e. the direct reaction 
must be endothermic), and the following inequality is correct:  
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From this it follows the expression for the length of solitary wave front:  
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The second condition for complex roots reduces to the system of inequalities: 
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It is easily seen that the following conditions together with (35) are sufficient for 
the above system correctness:  

 
 hKKK 321 >+ ,                                       (40) 

 
 ( )( ) 0<−− YXY DDDχ .                                (41) 

 
Let’s start using the dimensionless parameters: 
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Thus, in most cases corresponding to the probability values of media properties 
we can display the conditions (36), (40), (41) in a graphic form. Shaded areas in 
the Fig.1 contain points with coordinates satisfying the system (36), (40), (41).  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: Domain of governing parameters (42) meeting the conditions (36), 
(40), (41). 
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),( 43 AA about the point ),( 21 AA  is determined by inversion concerning to the 
circle of radius 1 in Fig. 1.  
     The minimum length of reactor, in which the space dissipate structures 
corresponding to case 1 may be generated, is given by 

 




















+−

=Λ=

YX D
K

D
KhK

L
213

min

χ

π .                                 (43) 

 

2.2 Case 2 

In this case analytical investigations entail cumbersome computations. Our 
attempt to obtain simple sufficient conditions for existence of dissipate structures 
corresponding to case 2 has failed.  
     At the same time there are reasons to believe that under the condition (40) 
generation of structures corresponding to case 2 will be impossible. On the other 
hand it is highly probable that the following conditions will be sufficient for 
springing up the mentioned dissipate structures:  

 
 hKKK 321 <+ ,                                          (44)  

 
 ( ) ( ) YXYX DKDKKKDDhK 12213 +++<+ χ .                 (45) 

 
     For a non-adiabatic reactor the system of mass and heat transfer equations 
differs from the system (2)–(4) only in the last equation:  

 

 ( )mTT
pcρ

Tk

pcρ
H

z
T

S
j

z

Tχ
t
T

−−+
∂
∂

+
∂

∂
=

∂
∂ ∆

2

2
,                  (46) 

 
where Tk  is the ambient heat transfer coefficient and mT is the ambient 
temperature.  
     For existence of fixed points under the condition (12) it is necessary now to 
propose that 

 
 mTT =0 .                                                  (47) 

 
Thus instead of (21) we obtain: 
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     It is clear that qualitative analysis of dissipate structures in a non-adiabatic 
through-reactor hasn’t differences of principle from the case of an adiabatic 
reactor. However there is yet another governing parameter pT ck ρ . 

3 Results and discussion 

Figure 2 depicts some results of numerical tests carried out under the realistic 
values of physical and chemical parameters satisfying the case 1: 
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Figure 2: Heterogeneous distributions of concentration (—) and temperature 
(·–·–·) along a tubular reactor in the case 1. 

     Heterogeneous distributions of concentration and temperature along a tubular 
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structures of this type are unstable, and they constitute an initial stage of 
generating running autowave fronts [6].  
     Dynamics of autowave structures formation and propagation in every detail 
can be described only by methods of non-linear stability theory [6, 7].  

4 Conclusion  

Formation of stable dissipate structures, such as running cells and autowaves, in 
non-isothermal reactors is controlled by set of diffusion and heat parameters. Our 
theoretical analysis allowed to detail the governing parameters which can be 
used for determining regimes of dissipate structures generating.  
     In particular, it has been clearly defined a role of rate constants dependencies 
on temperature with allowance for direct and reverse stages of the first-order 
chemical reaction. The main types of possible dissipate structures induced by 
these factors in a non-isothermal tubular through-reactor as well as conditions of 
their formation have been determined. The results of investigations are likely to 
be useful for calculating intensity of heat and mass transfer processes in chemical 
apparatuses. 
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