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Abstract 

Mixing layers are commonly observed in flow fields of many types of industrial 
equipment such as combustion chambers, chemical reactors, and fluid ejectors. It 
is important to effectively mix two co-flowing gaseous/fluids streams in such 
equipment. As the mixing of two fluids is an interface and surface tension 
dominated process, numerical simulations of the mixing process are generally 
very complex.  The present study is concerned with using the lattice Boltzmann 
method (LBM) to study vertices merging in a two-dimensional two-phase spatial 
growing mixing layer. Different velocity perturbations are forced at the entrance 
of the flow field of a rectangular mixing layer; the initial interface between two-
phases is evenly distributed around the midpoint in a vertical direction. By 
changing the strength of surface tension and combinations of perturbation waves, 
the effects of surface tension and velocity perturbation on vortices merging are 
investigated.  Some interesting phenomena, which have not occurred in a single-
phase mixing layer, are observed and the corresponding mechanism is discussed.   
Keywords:  lattice Boltzmann method, vortices merging, mixing layer, numerical 
simulation. 

1 Introduction 

Vortices behaviours including the formation and merging are commonly 
observed in engineering applications, such as in combustion chambers, pre-
mixers for gas turbine combustors, chemical lasers, propulsion systems, flow 
reactors, micro mixers, etc. Controlling the formation and evolution of the 
coherent structure in the mixing layer can improve efficiency of combustion or 
chemical reaction processes; therefore studies on vortices behaviour in mixing 
layers have been carried out both experimentally and computationally. Ho and 
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Huang [3] experimentally studied vortices merging in single phase mixing layer. 
Inoue [4, 5] numerically simulated vortices behaviour in double and triple 
frequency forced two-dimensional spatially growing single-phase mixing layers. 
By direct numerical simulation (DNS) and large-eddy simulation (LES), 
Silvestrini [9] have investigated the dynamics of coherent vortices in mixing 
layer. Lifshitz and Degani [6] proposed mathematical model for turbulent mixing 
layer with harmonic perturbations; the model reduced numerical complexity, but 
the surface tension dominated mixing of two-phase fluids was not highlighted.   
     In the present study, the LBM is employed to simulate vortices behaviour in 
two immiscible fluids mixing layer.  The aims of the study are to understand the 
effects of surface tension and the perturbation waves on vortices merging, and to 
obtain an insight to the vortices behaviour at the interface.  

2 

In recent years, the LBM has become an established numerical scheme for 
simulating multiphase fluid flows. The key idea behind the LBM is to recover 
the correct macroscopic fluid motion by incorporating the complicated physics 
into simplified microscopic models or mesoscopic kinetic equations. On 
simulating multiphase flow problems, four basic LBM models have been 
reported to date, namely: the chromodynamic model (Andrew et al. [1]), the 
pseudo-potential model (Shan and Chen [8]), the free energy model (Swift et 
al. [9, 10]) and the index function model (He et al. [2]).  In this article, the basic 
method of the index function model for tracking the interface between different 
fluids is employed.  In this model, the velocity and pressure field are given by 
the distribution function equations of index functions and the pressure, which are 
given as 
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where u is the macroscopic velocity, ρ  the density; G the gravity, and F the 
surface tension; T the background temperature,  x the spatial position vector, and 
t the time; αf  is the newly introduced distribution function of index function φ  
and αg  is the newly introduced distribution function of pressure; )(eqfα  and )(eqgα  
are the equilibrium distribution functions in the thα  direction and can be 
expressed respectively as 
 

φαα )u(),()( Γ=txf eq ,                                                  (3) 
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The lattice Boltzmann model 
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tδ  denotes the length of time step; p the pressure; τ  the dimensionless relaxation 
time; αω  is the weighting coefficient; αe  the discrete velocity vector, which, in 
two-dimensional 9-velocity (D2Q9) model, as shown in Fig. 1, is expressed as 
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where, RTc 3≡  is the lattice constant. 
     In equations (1) and (2), RTp ρρψ −=)(  to ensure that pressure satisfies the 
Carnahan-Starling equation: 
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where, both a and b are equal to 12RT  and 3/1=RT ; thus,  
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The index function φ , the macroscopic quantities, u and p are calculated from  
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where the surface tension force F is represented as  
 

                            φφ 2∇∇= kF                                                        (13) 
  
where k is the surface tension coefficient, which is related to intermolecular pair-

wise potential, attru , and can be expressed as ∫ >
−=

σr attr drurk r)(
6
1 2 , in which 

σ  is the effective diameter of molecular;. 
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    The kinematical viscosity tRTδτν )2/1( −=  and density ρ are calculated 
according to the index function: 
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where, hρ  and lρ  are the density of heavy and light fluids respectively. hν  and 

lν  denote the kinematical viscosity of heavy and light fluids respectively. hφ  
and lφ  are the maximum and minimum values of the index function, 
respectively. 
 

  

Figure 1: Discrete velocity set of 2-D 
nine-velocity (D2Q9) 
model 

Figure 2: Initial velocity distribution 
in side the computational 
domain 

3 Numerical simulation 

To simulate vortices merging in a two-phase spatially growing mixing layer, a 
rectangular domain of the flow-field is considered as: D = [0, Lx] × [-Ly/2, Ly/2], 
which is surrounded by an inflow boundary at the left, a free outflow boundary at 
the right, and a slip boundary at two other upper and lower sides. Unless 
otherwise mentioned, the channel length Lx and width Ly are set at 250 and 50 
respectively. The initial interface between two phases is evenly distributed 
around the midpoint in vertical direction, the corresponding values of index 
function are given as 259.0=hφ and 04.0=lφ , and the initial velocity field in 
side the computational domain consists of a hyperbolic tangent profile (see 
Fig. 2) defined as 
 

    )2/tanh(1),( yRayxu ⋅+= ; 0),( =yxv                 (16) 
     The velocity profile at the left boundary (x = 0) is given as 
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where, u and v are the velocity components in the x and y directions, u* and v* 
are the corresponding velocity perturbations; while, Ra is the velocity ratio. 
     Assuming that U1 and U2 are the free-stream velocity in the upper and lower 
layers, respectively, the average velocity, U = (U1+U2)/2, and the momentum 
thickness at x = 0, named as 0θ  here, are used as the reference scales for the 
velocity and length, respectively. Henceforth, all quantities will be normalised 
with respect to appropriate combinations of U and 0θ . Reynolds number for the 
mixing layer can be defined as νθ /Re 0U= , in which ν  is kinematical 
viscosity.  It is shown that the influence of Reynolds number upon the kinetic 
characteristic of the large-scale coherent structures is small enough if Reynolds 
number is larger than 200. Thus, Reynolds number is set at 200 in the following 
simulations. 
     The velocity perturbation u* and v* can be expressed as 
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where A, 1α , 1ω , 1ϕ  and )2( ≥iAi , )2( ≥iiα , )2( ≥iiω , )2( ≥iiϕ  are 
amplitudes, wave number, frequency and phase of the basic wave and 
subharmonic waves, respectively. Fn(y) are normalized characteristic mode 
determined from a linear stability theory. The frequency of basic wave that can 
lead to the most unstable mode of mixing lay is 0.225 with the velocity ratio 
Ra = 0.5 (Monkewitz and Patrick, 1982). So, 1ω  is given as 0.225, meanwhile 
Ra = (U1-U2)/(2U)=0.5, Fn(y) = 1/(1+y2), 02.01 =A , )2( 01.0 ≥= iAi , 

2/12 ωω = , 3/13 ωω = , 4/14 ωω = , nn ωα = , 01 =ϕ . In what follows, for 
simplicity, the subharmonic waves with the frequencies of 2ω , 3ω  and 4ω  are 
donated as the second, the third and the fourth subharmonic waves respectively. 
By superimposing multi-harmonics and changing their phase shifts, one can 
study the effects of the velocity perturbation to mixing layer.   

4 Results and discussion 

Because the basic wave and several sub-harmonic waves can be forced 
synchronously, there are many choices of the parameters in equations (18) and 
(19). Therefore, some typical combinations of perturbation waves are chosen for 
the simulation. Under some specific initial and boundary conditions, the instabilities 
will grow and vortices will appear; two or more vortices start to spiral around one 
another and then merge into a new vortex. The spiralling behaviour and the merging 
behaviour may repeat itself with the newly formed vortices. In the following, the 
results of simulation will be visualized by means of plots for phase distribution, 
vortices contour and corresponding frequency spectrum.   
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4.1 Non-vortex-merging  

In this section, the forced perturbation is only a basic wave with the parameters 
of 1ϕ  and 1ω . Fig. 3 shows the distributions of two immiscible fluids flow at 
t = 350 for two different values of surface tension. It shows that the vortices 
appear clearly but no merging takes place under a single-frequency perturbation.  
This is also be proved by the plots of corresponding frequency spectrum shown 
in Fig. 4, in which the frequency spectrum for three different cases at x=120 is 
presented. Similar plots are obtained at the other location of the flow-fields, 
which indicates that the vortices do not experience the merging anywhere.  
     The effects of surface tension can be judged in Fig. 3. With a zero surface 
tension, the interface is elongated at upstream. The elongated interface rolls up 
and forms vortices during the flow. The newly formed vortex spins and migrates 
continuously towards downstream and sweeps more and more layers of 
interfaces into it. For k = 0.01, the flow is qualitatively similar to the zero surface 
tension case except for the shape of interface in the corresponding vortices; the 
rollup of the interface in the vortices is slower because the extension of the 
interface is limited by the surface tension. When k increases to 0.1, the rolling up 
of interface at up- and mid-stream is similar to the previous two cases, but the 
interface evolution is delayed more by the much stronger surface tension. 
Differences can be identified at the downstream of the mixing layer, where the 
interface is pinched and broken.  

 

   
(a) k = 0 (b) k = 0.01 (c) k = 0.1 

Figure 3: Phase distributions with different values of surface tension at 
t = 350. 

 
                                (a) k=0                      (b) k=0.01                      (c) k=0.1 

Figure 4: Frequency spectrum plots with different values of surface tension at 
x = 120. 

4.2 Two-vortex-merging   

The interaction of the basic wave and its second sub-harmonic wave of 02 =ϕ in 
the mixing layer is first considered. The surface tension parameter, k, is chosen 
as 0 and 0.1 respectively. The phase distribution and corresponding frequency 
spectrum for these two cases with different surface tension are shown in Figs. 5 
and 6 respectively. It can be seen that the vortices formed at the beginning of the 
mixing layer are nearly of the same frequency as that of the basic wave. Under 
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the action of the second sub-harmonic wave, every two of these vortices will 
wind with each other and merge into a bigger vortex.  As shown in Fig. 6, the 
frequency of the big vortices becomes half of the small ones. The merged 
vortices start to shear when they move downstream and no further merging takes 
place. However, with the effect of surface tension, although the rollup of the 
interface in vortices is slower, the interfacial ends are blunter and the interface 
pinching and breaking behaviours take place; nevertheless, the basic mode of 
vortices merging is the same as that of zero surface tension case. 
      

  
             (a) k = 0                                         (b) k = 0.1 

Figure 5: Phase distributions with different values of surface tension at 
t = 350. 

     Fig. 6 shows the frequency spectrum of different surface tension at different 
position. At x = 40, the main frequency approximates to 1ω , which indicates that 
no merging takes place. When vortices move to x = 120, the frequency of 2/1ω  
substitutes 1ω  to dominate over the flow-field, while the basic frequency, 1ω , is 
still obvious.  Such a phenomenon reveals that two vortices are merging at this 
location and the structures of small vortices have not disappeared completely.  
Some frequencies which have never been added to the perturbation, such as 

2/3 1ω  and 12ω , can be identified in Fig. 6. They are the sums or differences of 
the frequency between the basic wave and sub-harmonic waves.  Moreover, the 
sameness of the frequency spectrum evolution for different cases can further 
prove that the strength of surface tension does not affect vortices forming, the 
mode of merging and the migration velocity of the vortices.  

 

   

 
(a)  

k = 0 

   

 
(b)  

k =0.1 

Figure 6: Frequency spectrum plots with different values of surface tension. 

4.3 Three-vortex-merging  

Fig. 7 shows the results in which the perturbation consists of the basic wave and 
the third sub-harmonic wave of 3/3 πϕ = . With the interactions of the basic 
wave and sub-harmonic wave, three vortices merging takes place in the mixing 
layer.  Two downstream vortices merge in the first place, and then the newly 
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formed vortex merges with the third one upstream. In fact, as it is shown, no 
matter what parameter of surface tension is chosen, the basic mode of vortices 
merging is almost the same. Furthermore, as shown in Fig. 8, the evolutions of 
frequency spectrum in three cases of different surface tension are quite 
synchronous.  

 
(a) k = 0 

 
(b) k = 0.1 

Figure 7: Phase distributions with different values of surface tension at 
t = 350. 

   

 
(a)  

k = 0 
 

   

 
(b) 

k = 0.1 

Figure 8: Frequency spectrum plots with different values of surface tension  

 

Figure 9: Interface distributions and vortices contours with different surface 
tension. 

     Fig. 9 shows a comparison of corresponding vortices contours with the same 
velocity perturbation and three different values of surface tension within the 
region of ]250 ,200[∈x  at t = 350; in each case, three main vortices merge into a 
larger one. It is shown that, with surface tension effect, more small vortices 
appear in the region of main vortices; and with the increase of surface tension, 
many small vortices are formed, and the cores of the three main vortices can 
even disappear. In addition, with zero surface tension at the two fluids interface 
(indicated by the dished line), the high vortices concentrate in the cores of the 
vortices; the structures of vortices match the corresponding phase distributions 
very well. However, with surface tension effect, the vorticity field is disturbed; 
the vorticity concentrations appear on the interfaces. 
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Further to the previous discussion, Fig. 10 shows the vortex-merging in a 
triple-frequency forcing mixing layer. The channel length Lx and width Ly are 
given as 375 and 125 respectively. The perturbation consists of a basic wave, a 
second sub-harmonic wave and a fourth sub-harmonic wave; and all phase shifts 
equal to zero. Based on this type of perturbation, a phenomenon of four vortices 
merging takes place in the mixing layer. In the first place, smaller basic vortices 
are formed upstream in the mixing layer. Thus, every two of these vortices will 
finish the primary merging and form to a bigger vortex.  Then in the flow field 
downstream, the secondary merging takes place, i.e. every two newly merged 
vortices repeat the merging process. In this way, the whole process of four-vortex-
merging is completed and no further merging behaviour takes place. It is noted 
from the frequency spectrum plots shown in Fig. 11 that, during the process of 
vortices merging, the main frequency transfers from 1ω  to 4/1ω  via 2/1ω . 

 
Figure 10: Phase distributions with zero surface tension at t = 400. 

 

 
Figure 11: Frequency spectrum plots with zero surface tension. 

5 Conclusion 
The behaviour of vortices merging in two-dimensional two-phase spatially 
growing mixing layer is numerically studied by the LBM. By changing the 
strength of surface tension and the combinations of perturbation waves, the 
effects of the surface tension and the velocity perturbation on the vortices 
merging are investigated. 
     With a single-frequency forcing, vortices appear clearly but no merging takes 
place in the mixing layer. When the mixing layer is forced by the two- or three- 
frequency perturbation, the vortices start to merge. The results show that the 
lower frequency of sub-harmonic wave applied, the more vortices are merged. 
The scale of the large vortex is directly proportional to the number of basic 
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4.4 More vortex-merging  



vortices being involved in the process. Through vortices merging, the interfacial 
surface area is enlarged quickly downstream in the flow-field. 
     In addition, the effect of surface tension strength on vortices formation, the 
pattern of merging, and the migration velocity of the vortices is limited. 
Although the rollup of the interface in vortices is slow, the surface tension does 
have effect on interfacial ends, pinching and breaking.  Based on this, it can be 
assumed that, no matter how strong of the surface tension is, the vortices 
evolution in two-phase mixing layer should be controlled positively by forcing 
the suitable perturbation upstream in the flow-field and obtaining expectant flow 
patterns consequently. 
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