
Simulation of coupled nonlinear 
electromagnetic heating with the Green 
element method 

A. E. Taigbenu 
School of Civil and Environmental Engineering, 
University of the Witwatersrand, Johannesburg, South Africa 

Abstract 

The nonlinear coupled differential equations that govern the problem when 
materials are electrically heated are solved with a flux-based Green element 
formulation that has significantly enhanced computational features in 
comparison to previous Green element formulations. The flux-based Green 
element formulation takes advantage of the ability of the boundary element 
theory to correctly calculate the normal derivative of the primary variable by 
implementing the theory in a finite element sense so that enhanced accuracy is 
achieved with coarse discretization. The complete solution information 
(temperature, electric potential and their normal derivatives) are made available 
by the flux-based formulation in each element so that refined solutions at any 
point, when needed, are calculated using only the element in which the point is 
located.  The closure problem associated with having more unknowns than 
discretized equations at internal nodes is addressed in a novel manner by a 
compatibility relation for the normal derivatives of the primary variable that has 
universal appeal.  The computational accuracy of the flux-based Green element 
formulation is demonstrated with a numerical example of nonlinear 
electromagnetic heating problem. 
Keywords:  electromagnetic heating, nonlinear diffusion-advection, nonlinear 
Poisson equation, Green element method. 

1 Introduction 

The food and related industries are very interested in addressing the problems 
associated with the heating of food substances by electrical currents. Of 
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particular interest is the distribution of the temperature field (indicative of the 
effectiveness of the applied heat) that is generated for a given electric potential 
that is applied to the food material.  For the temperature field, the governing 
equation closely resembles the diffusion-advection-reaction equation that has 
many applications in many engineering production processes.  Its nonlinear 
nature poses a challenge especially when the advective term is dominant and the 
equation then has a predominantly hyperbolic nature.  This equation is couple 
with the nonlinear electromagnetic equation which essentially has an elliptic 
character. 

These equations were traditionally solved by the finite difference and finite 
element methods.  A boundary element solution has been provided by 
Crann et al. [1] who used the Laplace transform formulation to simplify the 
temporal derivative and the dual reciprocity method to ensure that the solution is 
carried out only on the boundary.  That approach, referred to as the Laplace 
transform dual reciprocity method (LTDRM), is closely similar to that of 
Satravaha and Zhu [2] for the solution of nonlinear heat conduction problems.  
Linearization of the differential equations has to be done to be able to apply the 
Laplace transform dual reciprocity BEM.  Here the Green element method 
(GEM), which retains the normal derivatives at every nodal point, is used to 
solve the electromagnetic heating problem [3–5].  It is therefore referred to as the 
flux-based GEM.  The integral equations that result from the application Green’s 
identity are solved in each element.  The integrations are evaluated analytically, 
and the only approximation that is required is done when interpolating the 
primary variable and its normal derivative in the element.  High level of accuracy 
is thus achieved with coarse discretization of the computational domain and this 
compensates for the large number of degrees of freedom at each node.  The 
closure problem at the internal nodes that is as a result of a fewer number of 
integral equations than unknowns is resolved in a novel manner by generating an 
additional equation from numerically implementing the integration of the normal 
fluxes around the internal node.   An example solved by the LTDRM of 
Crann et al. [1] which employed 40 nodes is solved by the flux-based GEM with 
10 nodes to achieve comparable accuracy. 

2 Governing equations 

The electromagnetic heating problem that is addressed in this paper is governed 
by the coupled nonlinear equations that are given by Please et al. [6] 

( ) ( ) 2)( φσαα ∇−∇⋅+
∂
∂

=∇⋅∇ TT
t

Tk v    (1) 

and 
( ) 0=∇⋅∇ φσ      (2) 

where T  and φ  represent the temperature and electric potential fields of the 
medium on which ohmic heating is applied.  The material properties of the 
medium are: k  is the thermal conductivity and σ  is the electrical conductivity 
which are both dependent on the temperature field, α  is the heat capacity, 
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vu jiv +=  is the velocity field in two dimensions.  The solution to eqns (1) and 
(2) in a coupled manner can be achieved when the boundary and initial 
conditions are specified.  The first-, second- and third-type boundary  conditions 
are admissible, while the condition for the temperature and potential fields are 
assumed known at the initial time 0t .  Eqns (1) and (2) are rewritten as 
Poisson-type equations: 

( ) 



 ∇−∇⋅+
∂
∂

+∇⋅−∇=∇ 22 )(1 φσαα TT
tk

TKT v   (3) 

 
T∇⋅Φ−∇=∇ φ2      (4) 

where kK ln=  and σln=Φ .  The solutions to eqns (3) and (4) are achieved in 
a Green element sense. 

3 Green element formulation 

The Green element formulation that is employed for the solution of the coupled 
equations (3) and (4) uses the fundamental solution )ln( irrG −=  to the 

Laplacian operator )(2
irrG −∂=∇  in the infinite space to derive integral 

equations within a spatial element eΩ  with closed boundary eΓ   that constitutes 
one of the elements used in discretizing the entire computational region  Ω .  
The integral equations are given by [7] 
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( ) ( )∫∫ ∇⋅Φ∇−∫ ⋅∇−⋅∇+−
ΩΓ ee

dAGdsGGi φφφλφ nn   (6) 

 
where λ  is the nodal angle from integrating the dependent variable with the 
Dirac delta function in a Cauchy sense, and n  is the outward pointing normal on 
the elemental boundary.  It should be noted that so far no approximation 
whatsoever has been introduced in the formulation in arriving at eqns (5) and (6).  
Approximations are introduced by prescribing an interpolation for the 
distribution of the dependent variable and their normal derivatives in the 
element.  The Lagrange-type interpolation functions are used.  Using either 
linear triangular or linear rectangular elements and carrying out the integrations 
results in the matrix equations 
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jin ⋅∇−=⋅∇−=⋅∇−= TkqTkqTkq yx ,,   (10a) 

jin ⋅∇−=⋅∇−=⋅∇−= φσφσφσ yx ppp ,,   (10b) 
In eqn (9), jN  represents the interpolation function with respect to node j .  It 
should be noted that the integrations in eqn (9) are done in each element, and it is 
for simplicity that the index e  has been excluded.   All the integrations are done 
analytically for the two types of elements, namely rectangular and triangular 
elements.  Carrying out the matrix manipulations in eqns (7) and (8) results in 
two unknowns at every nodal point for each of the equations.  These are the 
temperature T  and its normal flux q  for the first differential equation, and the 
electric potential φ  and its normal flux p .  Eqns (7) and (8) are aggregated for 
all elements used in discretizing the computational domain and simplified to  

0
1

11 =++
+

++

dt
d n

nnnnn TSqBTA    (11) 

011 =+ ++ nnnn pEφC    (12) 
We have introduced a new index n , the iteration number,  into eqns (11) and 
(12) to indicate that the elements of the matrices are evaluated with known 
iterates, while the unknown quantities are to be computed at the current iteration 
level of 1+n .  Essentially, this iteration process is the Picard algorithm.  The 
time derivative in eqn (11) is simplified by the generalized finite difference 
scheme with weighting factor θ  to become 

( ) ( ) 0
1,12,1

12,112,1 =
∆
−

++++
++

++

t

nn
nnnnn TTSBqqBATTA ωθωθ  (13) 

where the indices 2  and 1 , respectively, are indicative of the current time 
ttt ∆+= 12  and previous time 1t , and θω −=1 .  Introducing the initial 
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conditions into eqn (13), and the known boundary conditions on external 
boundaries into eqns (12) and (13) simplify the coupled equations to 

RqHTF =+ ++ 2,12,1 nnnn     (14) 
 

MpEφC =+ ++ 11 nnnn     (15) 
where  

nn
n

nn

t
BHSAF θθ =

∆
+= ,                                      (6) 

The vectors on the right hand side of eqns (14) and (15) are known; their values 
come from the prescribed boundary and initial conditions.  The solution 
procedure within each time step is herein outlined. 
(i) For the known constitutive relations for k  and σ , and a known distribution 

of the temperature field { }2,2, , nn qT , the matrix equation (14) is solved to 

obtain updated values { }2,12,1 , ++ nn qT . 
(ii) Those updated solutions from (i) are used in eqn (15) to solve for the electric 

potential field { }11 , ++ nn pφ . 
(iii) The mean deviation of the iterates from the temperature and potential fields 

is calculated and compared with a prescribed accuracy tolerance ε .  
Convergence is said to be achieved when the mean deviation is less than ε .  
If convergence is not attained, steps (i) through (iii) are implemented using 
the refined solution iterates. 

(iv) When convergence within a time step has been met, another time increment 
is made and the above three steps are then repeated. 

4 Compatibility of the internal fluxes 

Because the current flux-based Green element formulation calculates the 
dependent variable and as well as its normal derivative (referred to as the flux) at 
each nodal point, the number of generated integral equations is short by one the 
number of degrees of freedom at internal nodes.  This is not the case with the 
external nodes where the prescribed boundary conditions make up for the 
shortfall in the number of generated discrete equations.  This is the closure 
problem that has been recognized in boundary element circles.  In the past one 
approach of resolving the closure problem has been to artificially create 
additional nodes and relocate them by small distances from the original location 
of the internal node along the internal segments [8].  Such an approach is a 
numerical artefact that usually reconfigures the geometry at the internal nodes to 
suit the numerical formulation.  That approach is not followed here but rather an 
additional equation is generated to make up for the shortfall.  Two previous 
presentations on this additional equation indicated that this additional equation is 
statement of the continuity of the normal fluxes at the internal node [4, 5].  We 
have now found this to be in error, and special acknowledgement goes to 
Dr. Elliot who prompted us to re-examine that statement.  We have now carried 
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out a rigorous proof of this compatibility condition of the internal normal fluxes.  
It is too lengthy to present here.  The proof will be presented in details in 
manuscripts that are currently being prepared.  Suffice to say that the proof is 
based on integrating the normal derivative of the primary variable around a circle 
of small radius centred at the internal node.  In the limit as the radius tends to 
zero, the integral equals the value of discontinuity of the primary variable at the 
internal point.  Where no discontinuity exists, the integral equals zero.  This can 
be stated as 

0=−=∫
∂
∂ −+ TTdn

n
Tk          (17) 

To implement eqn (17) numerically,  

02
2

0 10
=∫ ∑ ∆≈−=∫

∂
∂

=→

π

ζ
ββπ

M

i
iiqdqLimitdn

n
Tk                   (18) 

where M  is the number of elements at the internal node, ζ  is the radius of the 
circle at the internal node (See Figure 1).  One may ask why excellent results 
were obtained in the previous publications with a wrong compatibility condition.  
The reason is that all the simulations were carried out with rectangular elements 
and, as can be observed from eqn (18), / 2,i iβ π∆ = = 1, 2, 3, 4.  We have since 
tested the condition of eqn (18) with triangular elements where different angles 
of  iβ∆  are encountered and excellent results were obtained. 
 
 
 

 

Figure 1: Normal fluxes at an internal node. 

     Two unique characteristics of the flux-based formulation are that it provides 
the complete solution information for each element, and high accuracy is 
achieved with coarse discretization.  The latter compensates for the escalation in 
the number of degrees of freedom due to the evaluation of the primary variable 
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and the flux at every node.  The former allows for calculations of the solution at 
a point to involve only integrations within the element in which the point is 
located.  No reference is made to other elements in the computational region. 
That represents enormous computational savings when solutions are required at 
points of interest other than grid points. 

5 Numerical example 

The numerical example used by Crann et al. [1] in their Laplace transform dual 
reciprocity boundary element formulation is also used here to validate the current 
flux-based Green element formulation. The example is essentially one 
dimensional in the spatial dimension for which the analytical solutions: 
 ( )( )texxT −−−= 22/2  and  ( ) texxx −−+= 2φ ,  10 ≤≤ x  (19) 

are proposed for the differential equations 

( ) ( ) ),()( 1
2 txfTT

t
Tk +∇−∇⋅+

∂
∂

=∇⋅∇ φσαα v   (20) 

and 
( ) ),(2 txf=∇⋅∇ φσ      (21) 

The choice of the functions ),(1 txf  and ),(2 txf  has been made so that the 
proposed solutions satisfy the differential equations.  The boundary conditions 
are: 

0),0( == txT , 0),1(
=

∂
=∂
x

txT , 0),0( == txφ  and 1),1( == txφ  (22) 

The parameters for the medium and the advection velocity field are: Tk += 1 , 
T+= 1σ , 1=α  and iv = .  Using only four linear rectangular elements, the 

Green element simulations are carried out in a two dimensional domain of 1 × 1 
so that the size of each element is 0.25 × 1.  Effectively, 10 nodes are used to 
discretize the computation domain, representing a coarse discretization in 
comparison to the 40 nodes used by Crann et al. [1].  The fully implicit scheme 
with 1=θ  is used for the differencing in time, while the time step is varied 
starting with 0.025 for 1.00 ≤≤ t , then 0.1 for 11.0 ≤≤ t  and 0.25 for 51 ≤≤ t .  
The accuracy tolerance value used is 510−=ε  and convergence was achieved 
within 3 iterations in each time step.  The spatial distributions of the temperature 
and electric potential fields for times of 0.1, 0.5, 1, and 5 are presented in 
Figures 2 and 3, while their temporal distributions at 25.0=x , 5.0=x , and 

75.0=x  are presented in Figures 4 and 5.  There is good agreement between the 
Green element solutions and the analytical solution.  It should be pointed out that 
the solutions at points other than grid points were generated using only the 
solutions obtained for the element in which the grid points are located.  For 
instance, the solution at 1.0=x  was carried out on the first element 

]}1,0[],25.0,0[:),{( ∈∈ yxyx .  The high level of accuracy that is achieved with 
such a coarse grid is as a result of the fact that the only approximation in this 
formulation arises from the interpolation of the primary variable and its normal 
derivative. 
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Figure 2: Analytical and GEM solutions for the spatial temperature 
distribution at various times. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Analytical and GEM solutions for the spatial electric potential 
distribution at various times. 

6 Conclusion 

The nonlinear coupled differential equations which govern heating of food 
materials by electrical current have been solved using a flux-based Green 
element formulation that solves not only for the temperature and electric 
potential fields but also their normal derivatives.  The high level of accuracy 
achieved by the formulation arises not only because the solution procedure 
retains the nonlinear nature of the differential equations, but also due to the fact 
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that the normal derivatives of the temperature and electric potential are directly 
calculated. The increased number of degrees of freedom at each node is 
compensated by the coarse grid with which high accuracy is achieved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Analytical and GEM solutions for the temporal temperature 
distribution at various positions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Analytical and GEM solutions for the temporal electric potential 

distribution at various positions. 

The novel feature of the current Green element formulation is that the 
elemental solution is complete in the sense that the solution at any point in an 
element is obtained by carry out the boundary and domain integrations within 
that element.  No reference is made to other elements that  have been used to 
discretize the region.  Those solutions at points other than the grid points are 
equally second-order accurate as those at the nodal points.  In this paper, the 
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current flux-based GEM has used 25% of the grid points of LTDRM formulation 
of Crann et al. [1].  That is typical of the flux-based GEM which generally 
provides accurate solution with very coarse discretization. 
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