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Abstract 

A shock-interaction flow field generated by transverse sonic injection into a 
supersonic flow was simulated by solving the Favre-averaged Navier-Stokes 
equations using the weighted essentially non-oscillatory (WENO) schemes. 
Three-dimensional results indicate that there appear four pairs of vortices around 
the secondary injection. In the upstream of the square injection there exist two 
main recirculation regions and the primary vortex induces the horseshoe vortex 
region. After the secondary injection flow ejects from the square hole, it is forced 
by the supersonic main flow and then it becomes a pair of counter rotation 
vortices towards downstream. In the downstream there is a low-pressure region 
that conduces a pair of helical vortices. 
Keywords: supersonic flow, bow shock wave, horse-shoe vortex, CFD.   

1 Introduction 

Shock-interaction flowfield generated from a sonic gaseous flow injected 
transversely into a supersonic freestream is encountered in practical applications 
such as space shuttle reentry atmosphere, rocket motor thrust vector control 
systems, supersonic combustion, high-speed flight vehicle reaction control jets, 
and gas-turbine cooling systems [1-3]. One example is the case when re-entry 
vehicles or reusable rockets enter atmosphere, its attitude has to be controlled to 
endure large aerodynamic heating. Because of a high angle of attack on 
re-entering, the flow separates from the control surface. If the jet is injected into 
a hypersonic flow, complicated interaction between the jet and the flow occurs. It 
results in boundary layer separation, shock waves, and vortices, which are 
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schematically shown in Fig. 1.  The mixing flow field is very complex, which 
includes a bow shock wave in front of the injection, boundary layer separation 
and vortices. Therefore a higher-order scheme is needed when computing such a 
flow field. In 1980s, a new high-order scheme, essentially non-oscillatory 
scheme (ENO), was introduced by Harten et al. [4] Later, Wilcoxson and 
Manousiouthakis [5] and Jiang and Shu [6] developed the weighted ENO 
schemes based on ENO schemes, which are simpler and more efficient.  
     In 3-D flowfield, a three-dimensional bow shock forms ahead of the injection 
and interacts with the approaching boundary layer, resulting in a separation 
bubble. A barrel shock also occurs as the under expanded jet accelerates into the 
free stream. Acceleration of the jet core flow continues until a normal shock, or 
Mach disk, forms. Directly downstream of the jet plume another separated zone 
develops in the region between the jet exit and the boundary layer reattachment 
point. A pair of counter-rotating vortices generated within the jet fluid and a 
horseshoe vortex region also forms near the jet exit and wraps around the 
injector as illustrated in the schematic. 
     In this paper, the fifth-order WENO scheme of Jiang and Shu [6] and the k-ε 
turbulent model are used to calculate the supersonic flowfield with secondary 
injection. The freestream Mach number is 3.7 and 3.0 in two and three-
dimensional flowfield, respectively, and the injections in both flowfield are 
sonic. The slot width of the injection in two-dimensional flowfield is 1mm and 
the orific of the injection in three-dimensional flow is a cubic whose width is 
1mm. The conditions of the two-dimensional flowfield is the same with 
reference 4. 

 
 
 
 
 
 
 
 
 

Figure 1: Bow shock in a mixing jet-stream. 

     The schematic of the transverse jet injected into a supersonic cross flow is 
shown in Fig. 1. A three-dimensional bow shock is formed ahead of the injected 
stream and it interacts with the approaching boundary layer, resulting in a 
separation bubble. A barrel shock also occurs as the under-expanded jet 
accelerates into the cross flow. Acceleration of the jet core flow continues until a 
normal shock, or Mach disk, forms. Directly downstream of the jet plume 
another separated zone develops in the region between the jet exit and the 
boundary layer reattachment point. A pair of counter-rotating vortices generated 
within the jet fluid and a horseshoe vortex region also forms near the jet exit and 
wraps around the injector as illustrated in the schematic.  
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2 Governing equations 

The three-dimensional Favre-averaged Navier-Stokes equations and the 
low-Reynolds number k-ε turbulent model are given as follows: 
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where P represents the production of kinetic energy and the following form is 
used: 
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Figure 2: A flow field around an injected jet. 

3 Numerical method 

3.1 Spatial discretization 

The semi-discrete form of Eq. (1) can be written as: 
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     The spatial differencing of numerical fluxes adopts the fifth-order accurate 
WENO scheme of Jiang and Shu [6] for the inviscid convective fluxes and the 
fourth-order central differencing for the viscous fluxes. 
     The key idea of the WENO is to use a combination of all the candidate 
stencils to approximate the fluxes at the boundaries to a higher-order accuracy 
and at the same time to avoid spurious numerical oscillations near shocks instead 
of using only one of the candidate stencils. 
     By adopting the WENO scheme, we split the physical fluxes (say, F̂ ) locally 
into positive and negative parts as 

( ) ( ) ( )Q̂F̂Q̂F̂Q̂F̂ −+ +=      (7) 
where 0Q̂F̂ ≥∂∂ +  and 0Q̂F̂ ≤∂∂ − . In this paper, the local Lax-Friedrichs flux 
splitting method is used. 

( ) ( )( )Q̂Q̂F̂
2
1Q̂F̂ Λ±=±      (8) 
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where ( )54321 ,,,, λλλλλdiag=Λ , and 54321 ,,,, λλλλλ  are the 
local eigenvalues. We first consider the one-dimensional scalar conservation 
laws. For example, 

( ) 0ufu xt =+       (9) 
     Let us discretize the space into the uniform interval of size x∆  and denote 

xjx j ∆= . The spatial operator of the WENO schemes, which approximates 

( )xuf−  at jx , will take the conservative form 
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     Equation (13) represents the smoothness measurement of stencils. Through 
the smoothness measurement, the interpolation polynomial on each stencil is 
assigned a weight from which we can construct a polynomial to approximate the 
numerical fluxes by combining all the polynomials. 
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3.2 Time discretization 

The time discretization of the WENO scheme can be implemented by the 
third-order Runge-Kutta method. To solve the ordinary differential equation 

( )uL
dt
du

=      (14) 

where L is a discretization of the spatial operator, the third-order Runge-Kutta is 
simply 
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4 Presentation of results and discussion 

4.1 Cross-flow over two-dimensional flat surface 

The computed flow field resulting from the transverse injection of 
two-dimensional sonic jets into a supersonic turbulent flow at a Mach number of 
3.71 and a unit Reynolds number of 2.01×107 are simulated by employing the 
WENO scheme. The result is compared with the experiment and published 
calculations at the same condition [7]. 
     The computational domain is 88mm×50mm with the slot width of 1mm. The 
free-stream Mach number is 3.71 and total pressure is 1atm.  The jet is sonic and 
the total pressure is 0.31atm. The law of the wall coordinates y+ for the first mesh 
point has been maintained as y+<1 in all cases. 
     Mach number, density and pressure contours are shown in Figs. 3(a) and (b) 
for 3-D and 2-D, respectively. The upstream separation shock and the induced 
bow shock are clearly presented in Fig. 3. The jet normal shock and the 
recompression shock downstream are also captured. In this figure the presence of 
two recirculation zones in the upstream and a recirculation zone in the 
downstream sections are clearly demonstrated. The surface static pressure 
distributions are compared with the test data of Aso and Okuyama [7] in Fig. 4.  
The present computations are also compared with the simulations obtained by 
Toda and Yamamoto [2]. The agreement of the present computation is better that 
the prediction by Yamamoto along the upstream location due to the improved 
prediction method for the approaching flow field. However, in the downstream 
location, both computations seem to be nearly identical.  There appear two peaks 
upstream of the jet that corresponds to the separation and the stagnation line 
between the two counter rotating vortices upstream. The pressure peak in the 
downstream flowfield corresponds to the reattachment.  It shows excellent 
agreement. 
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(a)     (b) 

Figure 3: Mach number, density and pressure distributions. (a) 3-D, (b) 2-D. 

Figure 4: Pressure distribution along the plate. 

4.2 Three-dimensional results 

The configuration is a square hole in a flat plate. The computational domain is 
37mm long, 22mm wide, and 25mm high.  There are 69 points in the streamwise 
direction and 59×51 in a cross plane. 
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     Free-stream Mach number is 3.0 and total pressure is 1atm. Jet is sonic and 
total pressure is 0.5atm. 
     Boundary conditions are: supersonic inlet, supersonic extrapolated exit, 
extrapolated upper boundary, and adiabatic no slip on the flat plate. The jet exit 
is set with uniform conditions and oriented normal to the surface. 
     Velocity vector plots and Mach contours in symmetrical plane are shown in 
Figs. 5 and 6, respectively. An induced bow shock is clearly presented. From the 
Mach number contour plot, the barrel shock and Mach disk are presented. As the 
jet is injected, it expands through a Prandtl-Meyer fan centered at the nozzle lip, 
compresses through the barrel shock, and then passes through a Mach disk. 
 

Figure 5: Velocity vectors in symmetrical section. 
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Figure 6: Mach contours in symmetrical section. 

     Figure 7 presents the wall pressure distribution in symmetrical plane. There 
are two main vortices in upstream of the jet, which are called the primary vortex 
and the secondary vortex.  The primary vortex is induced by the boundary layer 
separation whereas the secondary vortex is induced by the injection.  
Furthermore, between the primary vortex and the wall, another vortex is shown, 
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which is called the tertiary vortex. In the symmetrical plane, the wall pressure 
jumps up with the boundary layer separation and in the stagnation zone between 
the primary and the secondary vortices, which form the second pressure peak. 
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Figure 7: Wall pressure distribution. 

 
Frame 001  04 Jan 2000 Frame 001  04 Jan 2000 

 
 

Figure 8: Streamlines around the jet. 

     Figure 8 presents the vortex structure by streamlines. There are four pairs of 
vortices in the flowfield.  Horseshoe vortices form in the near-wall region from 
the vorticity within the cross-flow boundary layer and the vorticity is generated 
due to the wall pressure gradient resulting from the jet/freestream interaction. 
The shear layer vortices are developed from the vorticity contained in the jet 
boundary layer, and roll up into the free-stream.  The counter-rotating structures 
are also formed from the vorticity presented in the jet boundary layer, and 
oriented in the streamwise direction. In this paper, other vortices are observed in 
the wake region downstream of the injector, which is called the helical vortex.  
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     Figure 9 presents the vortex structure by streamlines. There are four pairs of 
vortices in the flowfield.  Horseshoe vortices form in the near-wall region from 
the vorticity within the cross-flow boundary layer and the vortices is generated 
due to the wall pressure gradient resulting from the jet/freestream interaction. 
The shear layer vortices are developed from the vorticity contained in the jet 
boundary layer, and roll up into the free-stream.  The counter-rotating structures 
are also formed from the vorticity presented in the jet boundary layer, and 
oriented in the streamwise direction. In this paper, other vortices are observed in 
the wake region downstream of the injector, which is called the helical vortex 
(see Fig.10).  

 

Figure 9: Mach number contour at different stream locations. 
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Figure 10: Surface pressure contours around jet. 
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Figure 11: Velocity vectors in transverse section downstream of jet. 

 
Frame 001  31 Dec 1999 Frame 001  31 Dec 1999 

 
 

Figure 12: Velocity vectors upstream of jet. 

     Figure 11 presents the velocity vectors in cross-section where the helical 
vortices exist. 
     The primary vortex is induced by the boundary layer separation whereas the 
secondary vortex is induced by the injection.  Furthermore, between the primary 
vortex and the wall, another vortex is shown, which is called the tertiary vortex. 
As shown in Fig. 12, in the symmetrical plane, the wall pressure jumps up with 
the boundary layer separation and in the stagnation zone between the primary 
and the secondary vortices, which form the second pressure peak. 
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5 Conclusion 

Applications of the WENO scheme and the low-Reynolds number k-ε turbulence 
model can accurately simulate the supersonic flow field with a transverse 
injection. 
     As the flow passed around the injector port, the boundary layer in front of the 
jet was separated and the bow shock was formed. In front of the jet, a boundary 
layer separation formed horseshoe vortices. Counter-rotating vortices were 
formed from the vorticity presented in the jet boundary layer, and oriented in the 
stream-wise direction. In the wake region downstream of the injector, helical 
vortices were observed. 

The computations were performed in ORIGIN2000 at National Center for 
Supercomputing Applications under NSF grant CTS000003N. 
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