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Abstract 

In this work, a numerical study is presented of mixed laminar convection in 
ventilated enclosures. The left vertical wall of enclosure is maintained at a 
constant temperature greater than that of the fluid at entry, while the other walls 
are adiabatic. Two cases of ventilation are considered. In the first case, the fluid 
enters from the bottom left corner and leaves the domain through the right upper 
corner. In the second case, the fluid enters from the bottom left corner and leaves 
the domain through the middle of the upper wall. 
     The equations governing the phenomenon are discretised using the finite-
difference method. A computer programme is developed to simulate the flow 
behaviour and the heat transfer in the enclosure. Velocity and temperature fields 
are obtained. These numerical simulations are performed for a Grashof number 
of 106, a Prandlt number of 0.7 and three values of the Richardson number (0.5, 
5, and 25) 
Keywords: mixed convection, vorticity-stream function formulation, square 
enclosure, numerical method. 

1 Introduction 

An interesting review on natural convection in enclosures can be found in Fusegi 
and Hyun [1]. Concerning the subject of the present work, numerous 
investigations have been reported. We can cite as examples: 
     Unsteady 2-D hot water flow for energy extraction from a storage system, Cha 
and Jaluria [2] with cold water inlet at the bottom of the left vertical wall and hot 
water exit at the top of the same or opposite wall. Unsteady 2-D flow of air, Raji 
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and Hasnaoui [3] with inlet at the top of the left vertical wall and exit at the top or 
bottom of the opposite wall. Transient mixed convection, Omri and Ben 
Nasrallah [4] with air inlet at the top (at the bottom in a second case) of the hot 
left wall and exit at the bottom (at the top in the second case) of the right cold 
wall. Air flow with openings at the top of the vertical walls with one or two heat 
sources of zero thickness imbedded on a vertical board of finite thickness placed 
on the bottom wall, Hsu and Wang [5]. In the present study, laminar mixed 
convection flow of air in a ventilated cavity has been investigated numerically. 
The physical model under consideration and coordinates chosen are depicted in 
figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Geometrical configuration. 

2 Governing equations 

The flow and heat transfer phenomena to be investigated here are described by 
the complete Navier-Stokes and energy equations for two-dimensional laminar 
incompressible flows. The viscous dissipation term in the energy equation is 
neglected and the Boussinesq approximation is invoked for the buoyancy induced 
body force term in the Navier-Stokes equations. 
     From the governing equations of mass, momentum conservations, the 
vorticity-stream function formulation may be obtained by defining the stream 
function and vorticity, as, respectively, 
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Hence, the equations in dimensionless form can be written as follows. 
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Vorticity-transport equation  
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Energy equation 
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where Re, Ri and Pr denote, respectively, Reynolds number, Richardson number 
and Prandlt number. They are defined as    
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Here Gr is the Grashof number. 
     The other dimensionless parameters are defined as follows: 
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where L is the characteristic length of the cavity, Vo is the inlet velocity, ν is the 
kinematic viscosity, α is the thermal diffusivity, g is the acceleration of gravity,  β 
is the thermal expansion coefficient, Tw is the wall temperature, To is the 
temperature of the fluid at the entry and t is the time.     
     For the problem geometry, the following boundary conditions are specified: 
 
 

.Y. at    X.Ψ.θ.V.U 1000100 ≺≺=====                 (7) 
 
 

.Y. at    XΨΨ.
X
θ.V.U xo 101000 ≺≺===

∂
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0 1. 0 0. 0 0 OU . V . Ψ X at    Y . X Xθ ω= = = =− = = ≺ ≺              (9) 
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where Φ stands for , , , .U and Vθ ω ψ The width of the inlet and the outlet Xo is 
equal to 0.1. 
     In general, the value of vorticity on a solid boundary is deduced from Taylor 
series expansion of the stream function around the solid point and can be 
expressed mathematically as 
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where n is the outward drawn normal of the surface. 
     The convective heat transfer from the heated wall can be characterized by an 
average Nusselt number, Num, defined as 
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3 Numerical procedure 

The governing equations (2-4) along with the boundary conditions (7-13) are 
solved numerically, employing finite-difference techniques. The Alternating 
Direction Implicit (A.D.I.) method of Peaceman and Rachford in [6] is used for 
time marching. The buoyancy and diffusive terms are discretized by using central 
differencing while the use of a third-order upwind scheme [7] is preferred for 
convective terms. Convergence of iteration for the stream function solution is 
obtained at each time step. The resulting set of finite difference equations is then 
solved by using the Non Linear Over Relaxation (N.L.O.R.) method [8]. 
     All computations are performed using non-uniform grids with denser 
clustering near the walls where boundary layers develop and high gradients are 
expected [9]. 
     The solutions were initially tested with mesh sizes of 81 x 81, 101 x 101, 
121 x 121 and 151 x 151. It was found that variations in the solution fields were 
not significant (of the order of 1% in the mean Nusselt number obtained) between 
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mesh sizes of 121 x 121 and 151 x 151. As a compromise between accuracy and 
CPU time, the mesh size of 121 x 121 is used for all calculations.  
     The validity of the computer code developed has been checked for the sudden 
expansion of an oblique velocity field in a cavity [10] and the buoyancy-driven 
cavity flow [11]. The various sets of results compare very well and are nearly 
identical, confirming the credibility of the code. 

4 Numerical results and discussion 

The main characteristics of the flow and energy transport for each Richardson 
number (Ri) and for each case of ventilation will be shown in the following. The 
mean Nusselt numbers (Num) are shown as plots versus the time (figure 2). Flow 
and temperature fields are shown in terms of stream traces, isotherms, velocity 
and temperature profiles (figures 3-6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Mean Nusselt numbers versus time. 

     In both cases A and B, figure 2 shows that as Ri increases, Num decreases 
implying that the more the forced convection is dominant, the more important is 
the heat flux from the hot wall. 
     Figure 3 shows the stream traces and the profiles of the velocity components 
U and V in the X and Y directions respectively. As Ri increases, a boundary layer 
forms along the hot vertical wall. The relatively fast circulation in the center of 
the enclosure for Ri=0.5 becomes slower for Ri=5 and 25. Consistently with this 
result, the isotherms and the temperature profiles (figure 4) show that an 
essentially conductive heat transfer for Ri=25 takes over a forced convection for 
Ri=0.5. It is clear that in case B the effect of Ri on the flow and the heat transfer 
is very similar to that in case A (figures 5 and 6)  
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Figure 3: Stream traces (left) and Velocity profiles (right) case A. 
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Figure 4: Isotherms (left) and Temperature profiles (right) case A. 
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Figure 5: Stream traces (left) and Velocity profiles (right) case B. 
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Figure 6: Isotherms (left) and Temperature profiles (right) case B. 
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