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Abstract 

The natural convection in a horizontal fluid layer heated from below has 
complex dynamic behaviour. For the Rayleigh-Bénard convection of low Prandtl 
number fluids, the calculated flow and temperature fields are very sensitive to 
the truncation error of numerical algorithms. Different kinds of finite-difference 
schemes might yield different numerical results. In the present work the error 
analysis of the upwind scheme and QUICK scheme for the Rayleigh-Bénard 
convection of low Prandtl number fluid was conducted. It shows that the upwind 
scheme will introduce numerical dispersion. This effect enlarges the viscosity 
term of the momentum equations and therefore no oscillation could be predicted. 
The QUICK scheme has higher calculation accuracy. However, it introduces an 
additional third-order differential term which might overestimate the oscillation 
effect.  
Keywords:  Rayleigh-Bénard convection, low Prandtl number fluid, 
two-dimensional roll, finite-difference scheme, QUICK scheme. 

1 Introduction 

The natural convection in a horizontal layer confined by two rigid boundaries 
and heated from below is well known as Rayleigh-Bénard convection. This 
phenomenon reveals series non-linear characteristics and complex dynamic 
behaviour and has been well investigated [1−2]. The studies of low Prandtl 
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number Rayleigh-Bénard convection have been motivated not only by its 
astrophysical applications but also by its special flow and heat transfer 
characteristics because in this case the non-linear inertial terms become 
significant. Clever and Busse [3] used the Galerkin technique to obtain the 
Nusselt number for low Prandtl number convection at various Rayleigh numbers. 
According to the linear stability analysis, the critical Rayleigh number Rac and 
critical wave number kc for two rigid boundaries are given as Rac = 1707.762 and  
kc = 3.117, respectively [1]. Bertin and Ozoe [4] calculated the problem with a 
finite-element method and found that Rac increases with the decrease of Pr. The 
computed critical Rayleigh number for Pr = 0.01 and k = 3.14 is given as        
Rac = 2095.0. Later Ozoe et al. [5] used a more accurate second-order central 
difference scheme to solve the problem and the calculated Nusselt number 
agreed closely with those of Clever and Busse [3]. The computed value of Rac 
for all values of Pr also agreed well with the theoretical value. Their results show 
that the Rayleigh-Bénard convection of low Prandtl number fluid is very 
sensitive to the numerical algorithm. 
     As the Rayleigh number is larger than its critical value, the fluid begins to 
move and forms a steady flow pattern of two-dimensional rolls parallel to each 
other. For higher Rayleigh number the rolls become unsteady and the bending of 
the rolls propagates along the roll axis in time. By means of stability analysis for 
steady convection rolls Clever and Busse [6] discussed the oscillation instability 
and the critical Rayleigh number Rat for the onset of oscillation. Later they found 
that the transition from thermal convection in the form of rolls in a fluid layer 
heated from below to travelling-wave convection occurs at Rat = 1854 in the 
limit of low Prandtl numbers and in the presence of rigid boundaries [7]. Ozoe 
and Hara [8] carried out numerical computations with a second-order central 
difference approximation to predict Rat. The computing region is 4 times as large 
as the height, i.e., the aspect ratio A = 4. For the grid size of 0.02, the oscillation 
occurs at Rat ≈ 4500 for 4-roll pattern and Pr = 0.01. By extrapolation to zero 
grid size they inferred that the critical oscillatory Rayleigh number Rat was less 
than 2000. Yang et al. [9] and Wang et al. [10] used the SIMPLE algorithm with 
QUICK (quadratic upwind interpolation of convective kinematics) scheme to 
solve the same problem as that of Ozoe and Hara [8] with A = 4 and Pr = 0.01 
and found that the fluid flow and heat transfer is steady and stable for Ra ≤ 2200. 
Their numerical calculation showed that the oscillation occurs at Ra = 2500. As 
has been mentioned by Yang et al. [11], for low Prandtl number fluid the 
calculated Nusselt numbers with different numerical schemes are quite different. 
They suggested a possible explanation that the problem might have bifurcations 
and the results from different numerical schemes might lie at different branches 
of the solution. 
     In the present work, this problem was solved numerically with the upwind 
scheme, power law scheme and QUICK scheme. The Taylor series expansion 
was used to analyse the truncation errors of the schemes. It was found that the 
upwind scheme would introduce fictitious viscosity and underestimate the value 
of Nusselt number. The QUICK scheme was more suitable for the low Prandtl 
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number natural convection. However, it introduces a third-order differential term 
which might affect the oscillation characteristics of the physical model. 

Figure 1: Schematic diagram of the horizontal fluid layer heated from below. 

2 Mathematical model 

Let us consider a horizontal fluid layer with two rigid boundaries at its upper and 
lower surfaces, as shown in fig. 1. The fluid layer is heated from below and 
cooled from above. The temperatures at the upper and lower rigid boundaries are 
Th and Tc, respectively, and Th > Tc. The fluid expands when it is heated, 
therefore it suffers an upward buoyancy force. The problem is simplified with 
the following assumptions: (1) The flow pattern is assumed to be 
two-dimensional; (2) All properties of the fluid are constant except the density in 
the buoyancy term of the momentum equation which is a linear function of the 
fluid temperature; (3) The left and right boundaries are two symmetric 
boundaries, that means that the wave number in this model is fixed. 
     The following dimensionless variables and parameters are used for the 
modeling: 
 

HxX = , HyY = , HtU R  =τ , RUuU = , RUvV = , HLA = , 
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     We assume that at first there is no motion in the fluid, and the temperature 
distribution is in a steady state. The steady-state temperature and reduced 
pressure distributions can be expressed as 
 
 )1)((0 YTTTT chc −−+==τ  (1) 
 
and 
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     It is convenient to introduce the dimensionless temperature and pressure 
perturbations, 
 

 ( )Y
TT
TT

TT
TT

ch

c

ch

−−
−
−

=
−

−
= = 10τθ , (3) 

 

 





 −−=

−
= =

2
122

0 YY
U
p

U
ppP

RR ρρ
τ . (4) 

 
The dimensionless governing equation system can then be written as: 
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with the initial and boundary conditions 
 
 0=τ : 0== Pθ ; (9) 
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The average Nusselt number is calculated at the lower plate, 
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     The zero solution of the governing equation system (5)−(11) corresponds to 
the motionless state which is stable for Ra < Rac. Even the fluid is stirred before, 
the disturbance will gradually vanish and finally the fluid approaches the steady 
state again. However, If Ra > Rac, this zero solution becomes unstable. Any 

6  Advanced Computational Methods in Heat Transfer IX

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 53,
 www.witpress.com, ISSN 1743-3533 (on-line) 



small disturbance will be enlarged gradually and finally the Rayleigh-Bénard 
convection will be set up. For small value of Ra − Rac, the motion is two-
dimensional. With the increase of the Rayleigh number, the flow becomes steady 
three-dimensional flow, unsteady flow, and finally, turbulent flow [12]. 
     In this paper eqns. (5)−(11) for  Ra > Rac were solved with finite-difference 
methods. The research was emphasised on the oscillatory characteristics of the 
two-dimensional rolls, which reflects some special features of the upwind 
scheme and QUICK scheme. 

3 Comparison of finite-different schemes  

Ozoe et al. [5] used the vorticity and stream function to eliminate the pressure 
gradient terms in eqns. (5)−(11) and solved the problem by central differences 
for the derivatives in space and alternating-direction implicit differences for the 
derivatives in time. They calculated the Nusselt number for Ra ≤ 3000 with the 
aspect ratio A = 1. They found that the grid size had significant effect on the 
calculated Nusselt number and had to extrapolate their results to the case of (∆X, 
∆Y) → 0. As shown in table 1, their results agree well with those of Clever and 
Busse [3] obtained by Galerkin method. No oscillation is found in their 
calculation. 

Table 1:  The calculated Nusselt numbers from different sources. 

 
     Ozoe and Hara [8] further calculated the Nusselt number for higher Rayleigh 
numbers, 4000 ≤ Ra ≤ 2.8×105. The data listed in table 1 are taken from 
fig. 2 of [8]. These data are calculated under the grid size of 0.02. Their 

(*: The solution is oscillating; **: Data are extrapolated to zero grid size.) 

 Nu 
(Pr = 0.01) 

Ra Clever and 
Busse [3] 

Ozoe and 
Ukeba [5] 

Ozoe and 
Hara [8] 

Yang et al. [9] and 
Wang et al. [10] 

 k = 3.11 k = 3.14 
(1 roll) 

k = 3.14 
(4 rolls) 

k = 3.14 
(4 rolls) 

k = 3.93 
(5 rolls) 

2000 1.01955   1.018  
2300  1.105 **  1.094 1.104 
2500 1.17335 1.18 **  1.167 * 1.176 * 
3000 1.33978 1.35 **  1.269 * 1.355 * 
4000 1.59614   1.511 * 1.609 * 
5000   1.259 1.651 * 1.793 * 
6000 1.89397    1.289 * 1.764 * 1.933 * 

10000 2.22264    1.502 * 2.052 * 2.316 * 
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calculation shows that the oscillation appears when Ra ≥ 6000. However, their 
predicted values of Nu are much lower than those of Clever and Busse [3]. 
     We calculated the problem by the SIMPLE algorithm [13] and upwind 
scheme with Ra = 5000, Pr = 0.01,  A = 4 and found that the grid size of 0.02 
would yield Nu = 1.29 which is a little higher than that of Ozoe and Hara [8]. 
This value is not correct because the grid size of 0.01 would yield another value 
of Nu = 1.46. No oscillation can be found in the numerical solutions. The power 
law scheme yields the same results as the upwind scheme. Applying the Taylor 
series expansion to the upwind scheme, we can find that the upwind scheme 
introduces an additional dimensionless viscosity U∆X/2. In the above example, 
because of the low Prandtl number, we have DV = 1.414×10−3. The maximum 
dimensionless velocity Umax = 0.7776. Thus, for ∆X = 0.02, this fictitious 
viscosity could be 5.5 times as large as the real viscosity and therefore leads to a 
lower value of Nu. 
     Yang et al. [11] compared the QUICK scheme with the power law scheme 
and found that for natural convection of low Prandtl number fluids the QUICK 
scheme provides higher accuracy. Therefore, the QUICK scheme was used in the 
calculations of Yang et al. [9] and Wang et al. [10]. Some results for Pr = 0.01,    
A = 4 and ∆X = ∆Y = 0.02 are shown in table 1. The calculated values of Nu for 4 
rolls are close to those of Clever and Busse [3].  
     Applying the Taylor series expansion to the QUICK scheme, 
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It shows that the QUICK scheme does not introduce the fictitious viscosity term 
and has the truncation error of O(∆X 2), therefore the predicted Nu values are 
more accurate. 
     Wang et al. [10] also used the QUICK scheme to predict the roll oscillation. 
They found that for Pr = 0.01, A = 4 and ∆X = ∆Y = 0.02 the oscillation occurs at 
Ra = 2500, which is much higher than the theoretical value of the critical 
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oscillatory Rayleigh number, Rat =1854. However, they neither tested the effect 
of the grid size on the oscillation characteristics nor analysed the stability 
characteristics of the QUICK scheme. 
     For low Prandtl number fluid, we have D/U ~ 10−2. Thus, eqn. (15) is 
simplified as, 
 

 )O(
24

)( 3
3

32
2 X

X
XUXR ∆+

∂
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−=∆
φ . (16) 

 
In such a case, the QUICK scheme will introduce an additional term into the 
governing equations which affects the oscillation characteristics of the Rayleigh-
Bénard convection. In fact, the stability of the QUICK scheme is conditional. 
The stability condition is given as [14], 
 

 
3
8

≤
∆

=∆ D
XUP . (17) 

 
For Ra = 2500, Pr = 0.01 and ∆X = 0.02, the maximum dimensionless velocity 
Umax = 0.867, which yields P∆ = 8.67 and the condition (17) can no longer be 
valid. Although an oscillation solution can be obtained with the QUICK scheme, 
but it is not sure whether this oscillation is caused by the instability of the 
numerical scheme or by the characteristics of the physical problem or by both of 
them. 
     To verify the numerical schemes, two critical values should be considered. 
One is the critical oscillatory Rayleigh number Rat, which is difficult to be 
determined with direct numerical simulation. By extrapolation to zero grid size, 
Ozoe and Hara [8] estimated that Rat < 2000, which is near to the theoretical 
value, Rat = 1854. We tested a calculation with QUICK scheme for Ra = 2000, 
Pr = 0.01 and ∆X = 0.005. And contrary to our expectation, after several 
thousand hours of computing time of a PC with a 2.8 GHz CPU, we obtained a 
steady convection (The relative velocity disturbance ∆U/Umax was 
less than 10−9). When we added a small disturbance in Rayleigh number, an 
oscillatory disturbance was set up. The disturbance of the maximum vertical 
velocity component is shown in fig. 2. At τ = 30, there is some change in the 
frequency. After that point the oscillation becomes violent. Then, at about τ = 55, 
we increased the iteration accuracy and set the minimum iteration times to 3. 
And the oscillation gradually vanished. The solution reached the steady 
convection again.  
     The other criterion is the oscillation frequency. According to fig. 12 of Clever 
and Busse [6], the theoretical frequency of the oscillatory disturbance for          
Pr = 0.01 and Ra = 2500 is about 0.01 (after the conversion between different 
definitions of dimensionless time). But the QUICK scheme of Yang et al. [11] 
with the grid size of 0.02 resulted a frequency of 0.3125 (see fig. 2 of [11]). Our 
calculation with the QUICK scheme gave a frequency of 0.3344. Both of them 
are much larger than the theoretical value given by Clever and Busse [6]. 
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Figure 2: Velocity disturbance due to a disturbance in Rayleigh number 
(Ra = 2000, Pr = 0.01, A = 4 and ∆X = 0.005). 

     These examples show that the Rayleigh-Bénard convection of low Prandtl 
number fluid is very sensitive to the oscillation characteristics of the finite-
difference schemes. Therefore, more accurate schemes should be developed for 
the direct simulation of such a problem. 

4 Conclusions 

The Rayleigh-Bénard convection of low Prandtl number fluid is difficult to be 
solved because of its nonlinear properties and special dynamic characteristics. 
The two-dimensional transient numerical calculations with SIMPLE algorithm 
were carried out to simulate such a problem. Different numerical schemes such 
as upwind scheme, power law scheme and QUICK scheme were used in the 
calculation. We find that the upwind scheme and power law scheme are not 
suitable for the direct simulation of low Prandtl number Rayleigh-Bénard 
convection because they will introduce a fictitious dispersion term. The QUICK 
scheme provides an accuracy of the second order and will not introduce the 
numerical dispersion into the problem to be solved. The predicted values of 
Nusselt number are reasonably accurate. However, it fails to predict the critical 
oscillatory Rayleigh number and the oscillation frequency because of the 
stability and oscillation characteristics of the QUICK scheme itself. New 
numerical schemes should be developed to simulate the low Prandtl number 
Rayleigh-Bénard convection. 
     In the present work we have restricted our calculation with a fixed aspect ratio 
A = 4, i.e., the wave number k = 3.14. In fact, the critical Rayleigh numbers also 
depend on the wave number k and the number of rolls to be considered. 
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Therefore, there remains a lot of unsolved problems in the numerical simulation 
of the Rayleigh-Bénard convection. 

The present research was sponsored by the National Natural Science Foundation 
of China (No. 50478113), Shanghai Leading Academic Discipline Project 
(No. T0503) and Shanghai Pujiang Program (No. 05PJ14078). 

Nomenclature 
a thermal diffusivity, m2/s 
A Aspect ratio, A = L/H 
DT dimensionless thermal diffusivity, RaPrDT /1=  
DV dimensionless viscosity, RaPrDV /=  
g acceleration constant due to gravity, m/s2 
H height of the fluid layer, m 
k wave number; 
 heat conductivity, W/m2K 
L width of the computing region, m 
Nu Nusselt number, Nu = qH/[(Th − Tc)k] 
p reduced pressure, N/m2 
P dimensionless pressure perturbation, eqn. (4) 
Pr Prandtl number, Pr = ν /a 
q heat flux, W/m2 
Ra Rayleigh number, Ra = gβ (Th − Tc)H 3/(νa) 
Rat the critical oscillatory Rayleigh number 
t time, s 
Tc temperature of the upper plate, K 
Th temperature of the lower plate, K 
u velocity component in the x direction, m/s 
U dimensionless velocity component in the x direction, U = u/UR 
UR reference velocity, HRaPraU R /= , m/s 
v velocity component in the y direction, m/s 
V dimensionless velocity component in the y direction, V = v/UR 
x horizontal spatial coordinates, m 
X dimensionless horizontal spatial coordinates, X = x/H 
y vertical spatial coordinates, m 
Y dimensionless vertical spatial coordinates, Y = y/H 
Greek symbols 
β volumetric coefficient of expansion, 1/K 
ν kinematic viscosity, m2/s 
θ dimensionless temperature perturbation, eqn. (3) 
τ dimensionless time, τ = URt/H 
Subscript 
c critical value 
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