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ABSTRACT 
This paper presents an infill topology optimization procedure to generate lightweight porous structures 
by the Sequential Element Rejection and Admission (SERA) method. The proposed procedure 
evaluates the material volume of small neighbourhoods guaranteeing the presence of material within 
each of them by means of a set of local volume constraints. Local material varies between solid (“real”) 
and void (“virtual”) material models, where the element rejection and admission processes are 
conducted by two separate criteria. The novelty of the method is substantiated on the division of the 
domain into smaller subdomains where the material rejection and admission process is performed by 
means of the discrete topology optimization method SERA. The effectiveness of the method is 
demonstrated by analysing an MMB beam, where the impact of different neighbourhood sizes is 
studied. 
Keywords:  topology optimization, infill, porous, discrete methods, additive manufacturing. 

1  INTRODUCTION 
With the emergence of additive manufacturing processes, lightweight structures are reaching 
new heights and there are many proposals to approach them, as for example lattice structures 
that consist on a repetitive cell patterns distributed along the given design domain. The 
interest on porous structures relies on their higher strength to weight ratios [1], [2], their 
robustness with respect to variable loading, the fail-safe behaviour with respect to local 
deficiencies, and their increased buckling stability [3]. Hence, there is a great interest in 
obtaining porous structures through the use of topology optimization methods [4]. 
     Recent works that address the infill optimization design problem are based on the so called 
SIMP method [5], as it is the case of the work of Wu et al. [6], where the well-known density 
based method was extended by a local volume constraint. Later, as a development of the 
coated structures proposed by Clausen et al. [7], Wu et al. introduced a method to 
simultaneously optimize the outer shell and the inner infill of the structure [8]. 
     Progressing in this line of work, this work introduces an extension of the Sequential 
Element Rejection and Admission (SERA) method for optimum infill design. The aim is to 
develop a procedure to design optimal porous structures by means of SERA. In recent years, 
SERA was successfully applied to several topology optimization scenarios [9], and is now 
extended to optimization of porous structures. SERA is a discrete method first proposed by 
Rozvany and Querin [10]. It is a bidirectional evolutionary method where two separate 
criteria drive the addition and removal of the material from the design domain. First 
applications where oriented to stress-based design, but its effectiveness in more complex 
topology optimization problems is already proven [11], demonstrating the versatility and 
robustness of the method. A full description of the method along with the corresponding 
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MATLAB code can be found in the work by Ansola Loyola et al. [12], and the reader is also 
referred to the monography by Querin et al. [13]. 
     SERA makes use of discrete design variables and does not require smoothing and 
projection filters for densities, except for the traditional sensitivity filter proposed in [14]. 
The infill formation is controlled by a set of local volume constraints applied to local 
quadrangular and non-overlapping neighbourhoods or subdomains that the original design 
domain is split into. The material addition and rejection is performed within each of these 
subdomains, and the accomplishment of the global volume value is guaranteed by the 
proposed quantification of local material. Additionally, since the update rule of the design 
variables is performed by an evolutionary method, the integration of the large number of 
volume constraints is straightforward. The effectiveness of the proposed method for 
generating interior infill designs is demonstrated in the paper using numerical application 
examples. 

2  PROBLEM FORMULATION 
The design procedure proposed in this work for optimum porous structures stands as a 
maximum stiffness problem with the goal of finding the material distribution that minimized 
the elastic energy of the structure under prescribed support and loading conditions. The 
general formulation of the problem stands as: 

Minimize ρ 𝑐ሺρሻ ൌ 𝑈୘ ൉ 𝐾 ൉ 𝑈, (1)

Subjected to: 𝐾 ൉ 𝑈 ൌ 𝐹, (2)

 𝑔ୱሺρሻ ൑ 𝑉୐୧୫ / 𝑠 ൌ 1, … , 𝑆, (3)

 ρୣ ൌ ሼρ୫୧୬, 1ሽ, (4)

where c(ρ) is the compliance of the structure, ρ is the vector of design variables, U and K are 
the displacement vector and the global stiffness matrix, respectively, and F is the applied 
load vector. The problem is subjected to a set of local volume constrains where gsሺρሻ denotes 
the s-th constraint and the sub-index S stands for the number of local constraints. The value 
of each local constraint must be below a limit value named as VLim. The parameter ρmin is the 
minimum elemental density, which in this work is given a value of 10–9. Since SERA is a 
discrete method, the elemental density values (ρe) are either ρmin or 1, representing void or 
solid material, respectively, which always leads to a binary density field. 
     The topology of trabecular structures is far more complex than its classical topology 
optimization design counterpart’s, and is composed of intertwined and connected 
microstructures. One example of such topology can be found in Fig. 1. The volume constraint 
that guarantees the formation of such microstructure is given by eqn (5) that gives the value 
of the volume fraction within small subdomains 

𝑔ୱሺρሻ ൌ
𝑉ୱሺρሻ

𝑉୘୭୲
ൌ

∑ ሺρ୫ ൉ 𝑣୫ሻ୑
୫ୀଵ

𝑉୘୭୲
. (5)

In eqn (5) Vs(ρ) is the volume of the s-th local subdomain, ρm and vm are the density and 
volume of the m-th finite element inside the s-th subdomain, respectively, and VTot is the 
maximum volume of the s-th subdomain. 
     The set of local constraints ensures that a minimum amount of material will be placed 
within each subdomain driving the problem to a more disperse material layout and avoiding 
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excessive accumulation, at the time that the global volume value is met. The subdomains (𝛺s) 
are split parts of the original design domain, quadrangular parts of size R1

s × R2
s, which can 

be any aspect ratio (see Fig. 2). 
 

 

Figure 1:  Infill design of porous structure. 

 

Figure 2:  Division of the design region in subdomains. 

2.1  Determination of the number of elements to be added and removed 

The number of elements that change their material status is determined by three parameters: 
the progression rate (PR), the smoothing ratio (SR), and the material redistribution fraction 
(β). Typical ranges for values of these parameters are: PR ϵ[0.01–0.05], SR ϵ[1.2–1.4] and β 
ϵ[0.001–0.005]. 
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     How SERA removes and introduces material into the design domain is controlled by the 
PR (eqn (6)), which determines the target volume fraction V(i) to be reached in the present  
i-th iteration of the optimization problem in each subdomain. That target volume fraction 
implies a volume fraction of material that must be removed, ∆V(i), given by eqn (7). ∆V(i) is 
now differentiated into a volume fraction that will be added ∆VAdd(i) and a volume fraction 
that will be rejected ∆VRem(i), a process controlled by SR (eqns (8) and (9)). Hence, the 
optimization process is governed by the following equations until the target volume fraction 
VLim is reached 

𝑉ሺ𝑖ሻ ൌ max ቀ൫𝑉ሺ𝑖 െ 1ሻ ൉ ሺ1 െ 𝑃𝑅ሻ൯, 𝑉୐୧୫ቁ, (6)

Δ𝑉ሺ𝑖ሻ ൌ |𝑉ሺ𝑖ሻ െ 𝑉ሺ𝑖 െ 1ሻ|, (7)

Δ𝑉஺ௗௗሺ𝑖ሻ ൌ 𝛥𝑉ሺ𝑖ሻ ൉ ሺ𝑆𝑅 െ 1ሻ, (8)

Δ𝑉 ୣ୫ሺ𝑖ሻ ൌ Δ𝑉ሺ𝑖ሻ ൉ 𝑆𝑅. (9)

     Once the target volume fraction is reached, the material redistribution fraction (β) controls 
the relatively small constant amount of material fraction which is redistributed until the 
problem converges, where the same number of elements are added and removed as shown in 
eqn (10) 

Δ𝑉୅ୢୢሺ𝑖ሻ ൌ Δ𝑉 ୣ୫ሺ𝑖ሻ ൌ β ൉ 𝑉୐୧୫. (10)

     The intermediate objective volume fractions are of great help to compute the number of 
elements to be removed, ∆ERem

s(i), and added, ∆EAdd
s(i). By means of eqns (11) and (12), the 

net material volume that will be removed/added is distributed into the different subdomains 
according to their individual size, and considering that the presented formulation allows a 
design region to be divided into subdomains of unlike sizes and aspect ratios, the different 
subdomains can trade with their own amount of elements 

Δ𝐸ୖୣ୫
௦ሺ𝑖ሻ ൌ Δ𝑉 ୣ୫ሺ𝑖ሻ ൉ 𝑅ଵ

௦ ൉ 𝑅ଶ
௦, (11)

Δ𝐸୅ୢୢ
௦ሺ𝑖ሻ ൌ Δ𝑉୅ୢୢሺ𝑖ሻ ൉ 𝑅ଵ

௦ ൉ 𝑅ଶ
௦. (12)

2.2  Sensitivity analysis 

A sensitivity analysis is carried out to provide information on how sensitive the objective 
function is to the addition or removal of the elements. The evaluation of the sensitivities is 
performed globally, over the whole domain, so that the connectivity of the microstructures is 
enhanced. The sensitivity computation process of the SERA method is not included in this 
work, but the reader can find an extensive explanation in [12], [13]. Taking into account that 
there are two different material states, the expressions of the sensitivity numbers for solid or 
real material ሺαୣ౎ሻ and void or virtual material ሺαୣ౒ሻ are given by the following equations: 

αୣ౎ ൌ 𝑈ୣ
୘ ൉ 𝑘ୣ ൉ 𝑈ୣ, (13)

αୣ౒ ൌ െ𝑈ୣ
୘ ൉ 𝑘ୣ ൉ 𝑈ୣ, (14)
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where Ue is the displacement vector of element e due to the applied loads and ke represents 
the elemental stiffness matrix. This sensitivity number in each element determines which 
elements are removed or added so that the objective function is minimized. 

2.3  Material rejection and admission process 

The material rejection and admission process is subdomain-wise performed taking into 
account the sensitivity numbers of those elements contained in it. For that end, the sensitivity 
matrix is split into submatrices of equal sizes of the subdomains they correspond to. 
Following the framework of the classical SERA, but now arranged for optimum infill design, 
every sensitivity submatrix is rearranged into two lists, a list for solid elements ሺαୣ౎ሻ and a 
list for void elements ሺαୣ౒ሻ, and both ordered in a descendant way (see Fig. 3). 
 

 

Figure 3:  Global and local sensitivity lists. 

     The elements that will change their material status from solid to void and vice versa in the 
i-th iteration are separately determined for each pair of lists according to the threshold value 
of solid elements ሺα்௛

௦
ோሻ and the threshold value of the void elements ሺα்௛

௦
௏ሻ. These are 

computed for each subdomain s as the sensitivity values corresponding to the cells located in 
positions ERem and EAdd starting from the bottom of the lists, eqns (15) and (16) 

α்௛
௦

ோ ൌ α௘ೃሺ𝑅ଵ
௦ ൉ 𝑅ଶ

௦ െ Δ𝐸ୖୣ୫ሻ, (15)

α்௛
௦

௏ ൌ α௘ೇሺ𝑅ଵ
௦ ൉ 𝑅ଶ

௦ െ Δ𝐸୅ୢୢሻ. (16)

     Eqns (15) and (16) govern also the material redistribution stage in case that the target 
volume fraction is reached. In this case the same number of elements would be added and 
rejected, since eqn (10) stablishes that the volume fraction to move material forward and 
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backward is similar when redistribution process starts. A quick view of the whole 
optimization process is provided in the flow chart of Fig. 4, where the operations concerning 
local subdomains are highlighted separately. 
 

 

Figure 4:  Flow chart for infill optimization. 

2.4  Filtering of sensitivities 

In order to avoid any instability and checkerboard problems, a sensitivity filtering step is 
included in the formulation, which is globally performed over the whole design domain so 
that the continuity of the resulting microstructure is guaranteed. The proposed procedure 
introduces a single filtering step and, since SERA is a discrete method, no additional 
projection techniques are required to make the density field binary. The mesh independent 
filter is based in the technique proposed by Sigmund and Petersson [14], and modifies the 
sensitivity number of each element based on a weighted average of the element sensitivities 
in a fixed neighbourhood defined by a minimum radius rmin, see eqn (17) 

α෥ୣ ൌ
∑ 𝑤୨

ே
୨ୀଵ ൉ ρ୨ ൉ α୨

ρୣ ൉ ∑ 𝑤௝
ே
௝ୀଵ

, (17)

𝑤୨ ൌ max ሺ0, 𝑟୫୧୬ െ distሺ𝑒, 𝑗ሻሻ; ሼ𝑗 ∈ 𝑂 dist⁄ ሺ𝑒, 𝑗ሻ ൑ 𝑟୫୧୬ሽ; 𝑒 ൌ 1, … , 𝑁, (18)

where α෥ୣ is the filtered sensitivity number of the eth element, N is the number of elements in 
the domain, and ρj and αj are the density and the sensitivity number of j-th element. According 
to eqn (18), the weighting factor μj for element j, decreases linearly the further the element j 
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is from the element e, where dist(e, j) is the distance between the centres of both elements. 
For all elements outside the filter radius, the weighting factor is equal zero. 

2.5  Stopping criterion 

The convergence criterion is defined as the change in the objective function in the last 10 
iterations and is given by eqn (19). This number of iterations was found to be an adequate 
number of iterations for convergence to take place. It implies that the process will have a 
minimum of 10 iteration as the convergence is not applied until the tenth iteration 

ε୧ ൌ
ห∑ 𝑐୧

୧ିହ
୧ିଽ െ ∑ 𝑐୧

୧
୧ିସ ห

∑ 𝑐୧
୧
୧ିସ

൏ ε୐୧୫, (19)

where i is the current iteration number (greater than 10); ci is the objective function value 
from eqn (5) in the i-th iteration; εi is the convergence value of the objective function in the 
i-th iteration; and εLim is the convergence limit which controls when to terminate the 
optimization process. 

3  EXAMPLES 
In the following section an MBB beam is used to demonstrate the effectiveness of the 
proposed procedure. The definition of the subdomain sizes can yield different final designs, 
hence, the MBB beam is optimized under different values of parameters R1 and R2, and the 
values of the objective functions are discussed. 

3.1  MBB beam 

The design domain of the MBB is given in Fig. 5(a), where the horizontal displacement of 
the left hand side nodes and the vertical displacement of the right lower edge node are 
restricted. Taking advantage of the symmetry, the half of the full domain is discretized using 
a fine mesh of 1200 × 600 unit square elements, and a vertical force is applied in the left 
upper node. The objective volume fraction is set to 0.4, the filter radius is rmin = 5, and the 
SERA parameters are taken to be SR = 1.3, PR = 0.03 and β = 0.003. For the infill design, the 
size of all the subdomains is equal with R1 ൌ R2 = 50 elements. 
     The classical topology optimization by means of SERA guides the problem to the 
topology shown in Fig. 6(b), clearly showing how great void areas emerge and thick solid 
members are formed. The procedure for porous designs proposed in this work, however, 
results in a topology that shows a more intricate but more uniform material distribution shown 
in Fig. 6(c), where the structure is composed of intertwined members that form connected 
microstructures. 
     The set of local material volume constraints guarantees that a minimum amount of 
material will remain within each subdomain, material that is orientated along the direction of 
the principal stresses. As a result, there may be regions where the material is uniaxially 
distributed as a consequence of a uniaxial stress field, as it happens in some areas of the 
topology in Fig. 6(c). It must be noted that, compelling the optimization process to distribute 
material in such a disperse pattern does not encourage maximum stiffness, what is the reason 
for that the compliance of the porous structure increases in comparison to the compliance of 
the classical result of the MBB. 
     The infill optimization procedure presented in this work gives the opportunity to work 
with subdomains of different sizes by just defining different R1 and R2 values. The size of the  
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Figure 5:    (a) Design domain of an MBB beam; (b) Classical topology optimization result, 
c = 96.181; and (c) Optimized porous design, R1 = 50, R2 = 50, c = 140.929. 

subdomains can be as small as the unit element to as big as the design domain itself. While 
smaller subdomains will show a more marked detriment in the structural compliance, the 
larger subdomains will return a lower value of the objective function, with a minimum in the 
case that a unique subdomain of the size of the full domain is defined. That is to say, the 
stiffness of the porous structure depends on the size of the subdomains. This is demonstrated 
by the examples gathered in Fig. 6. 
     The square subdomains range from R1 × R2 = 10 × 10 to 600 × 600 with an additional case 
where a single subdomains is enough to over the whole design domain (R1 × R2 = 600 × 
1200). All the results are obtained for a volume fraction of 0.4 and the same SERA parameters 
as for the result in Fig. 5 are used. The evolution of the objective function clearly evidences 
the inverse relation between the subdomain size and the structural compliance, as the latter 
decreases at the time that the former increases. Nevertheless, as the subdomains become 
larger, the ending topologies form thicker members and bigger void areas, whereas smaller 
subdomains provide greater fail-save properties and robustness with respect to a variation in 
the load direction and show intricate topologies with perfectly matching and connected 
microstructures. On the limit, if a unique subdomain covers the whole design domain, the 
classical topology optimization result emerges.  
     The obtained results demonstrate that the proposed procedure is perfectly valid to design 
optimum porous structures by infill optimization techniques. Furthermore, the resulting 
microstructures are shown to be perfectly connected which guarantees the continuity of the 
intertwined members of the structure favouring the mechanical behaviour of the whole. 
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Figure 6:    Infill designs for several subdomain sizes. (a) R1 × R2 = 10 × 10, c = 192.314; 
(b) R1 × R2 = 20 × 20, c = 161.875; (c) R1 × R2 = 30 × 30, c = 160.330;  
(d) R1 × R2 = 40 × 40, c = 150.1; (e) R1 × R2 = 50 × 50, c = 140.929; (f) R1 × R2 
= 60 × 60, c = 136.235; (g) R1 × R2 = 75 × 75, c = 130.218; (h) R1 × R2 = 300 × 
300, c = 101.574; (i) R1 × R2 = 600 × 600, c = 99.539; and (j) R1 × R2 = 1200 × 
600, c = 96.247. 
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     Compared to procedures based on the SIMP method, the presented procedure is 
substantiated on a discrete topology optimization method that directly drives the problem to 
black and white material layouts. The algorithm does not require any additional density 
filtering and projection subroutines that may complicate the sensitivity analysis and increase 
the computational cost. Also, since SERA considers discrete design variables and the update 
rule is performed by an evolutionary method other than by a mathematical programming 
approach, it is not required to build an equivalent single function that reduces the large 
number of constraints into a single one. Finally, the capacity to work with different 
subdomain sizes gives the opportunity to choose the porosity of the resulting topology. 

4  CONCLUSIONS 
In this paper, a discrete variable method for infill topology optimization is investigated, by 
means of the Sequential Element Rejection and Admission Method (SERA). The proposed 
procedure provides an alternative approach for integrating local volume restrictions along 
with the classical topology optimization formulation to encourage structures that resemble 
trabecular bones, an ideal solution for the interior of additively manufactured models. It is 
shown that the result obtained have good coherence with the lightweight porous structures 
obtained with other density based methods. Obtained solutions are directly black and white 
topologies since discrete variables are applied, where only the basic sensitivity filtering step 
is involved. Numerical examples show excellent behaviour of the method, and demonstrate 
the versatility of the proposed strategy, proving that the aim of the work is achieved. 
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