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ABSTRACT 
An attempt has been made to evaluate and predict the traffic-induced ground vibration using a hybrid 
optimized ANFIS-based model. Towards this aim, ground vibrations caused by traffic were monitored 
on a building located near the road. To investigate the appropriateness of this approach, the prediction 
by ANFIS was also compared with the most widely used vibration predictors. In this research, a hybrid 
of adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) 
and genetic algorithm (GA) was proposed to predict traffic-produced ground vibration. The 
performance criterion selected for the comparison between the actual and the predicted data were the 
sum of squares due to error (SSE), the root mean square error (RMSE), and goodness of fit (R-square, 
adjusted R-square). It turns out that the hybrid GA-ANFIS prediction model outperforms the commonly 
used predictors and conventional ANFIS. 
Keywords:  ground vibration, adaptive neuro-fuzzy inference system, particle swarm optimization, 
genetic algorithm. 

1  INTRODUCTION 
Vibrations caused by traffic are a common concern of society, because they often cause 
problems for people as well as with buildings. The vibrations induced by traffic are 
transmitted through the pavement and then spread to the foundations of the building, which 
may be very annoying for its inhabitants. The most appropriate solution to given noise and 
vibrations problems require improvements or modification to the three basic elements: 

- to modify the source of vibration (to reduce the noise or vibration output); 
- to control the transmission path and the environment so as to reduce noise or vibration 

level reaching the recipient; 
- to provide the receiver with a personal protective device. 

     Many earthworks, such as piling and vibration compaction of materials are causing 
vibrations, which may be transmitted through the ground to nearby facilities. These 
vibrations resulting in dynamic forces are having effects on objects and facilities in the 
immediate vicinity and are causing damage. In this case old buildings are most the vulnerable. 
     Traffic vibration is mainly caused by heavy vehicles, e.g. trucks and buses. Cars and light 
trucks rarely cause vibrations that are noticeable on buildings. Road transport is usually what 
causes vibration frequency in the range between 5 and 25 Hz and a speed variation of soil 
from 0.05 to 25 mm/s. The frequencies and the velocity of vibration depend on numerous 
factors, such as pavement conditions (especially damage and roughness), the speed and 
weight of vehicles, a vehicle suspension system, the type of soil, the season, the distance 
between the road and the building and the type of the building. There are two ways in which 
highway traffic can induce vibrations in nearby buildings: 

• Ground-borne vibrations caused by dynamic impact forces of tires on the pavement 
surface that can propagate and excite footings and foundation walls below ground. 
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Vibrations of footings and foundation walls can induce vibrations in other building 
components below or above ground. 

• Air-borne vibrations caused by low frequency sound that can excite building components 
above ground. It should be noted that airborne vibration is not considered in this paper. 

     To predict traffic induced ground vibrations, several mathematical and empirical formulas 
were developed. These empirical equations often show great deviations between the 
calculated and measured peak particle velocity (PPV). Artificial neural network and neuro-
fuzzy technique have better prediction capability then conventional vibration predictors  
[1]–[5]. In this paper, an attempt has been made to evaluate and predict the traffic-induced 
ground vibration by incorporating distance from the source of vibration to geophone, mass 
of vehicle, type of the speed bump and height of the speed by using an ANFIS. 

2  OPTIMIZATION METHODS 
ANFIS is the fuzzy inference system implemented in the framework of adaptive networks. 
The basic structure of the fuzzy inference system (FIS), which was introduced by Zadeh, 
comprises fuzzification of the input variables, application of the fuzzy operator (AND or OR) 
in the antecedent, implication from the antecedent to the consequent, aggregation of the 
consequents across the rules, and defuzzification. The most important reason for combining 
fuzzy systems with neural networks is to use learning capability of neural network. Such a 
combination should be able to learn linguistic rules and/or membership functions, or to 
optimize existing ones. The ANFIS architecture for two-rule two-input sugeno model is 
presented in Fig. 1. 

2.1  Genetic algorithm and Particle Swarm Optimization 

To optimize the ANFIS parameters of membership functions a Genetic algorithm (GA) and 
Particle Swarm Optimization (PSO) were utilized. Two main disadvantages of ANFIS are 
slow convergence and trapped in local minimum. The PSO is used for increasing 
convergence rate and avoidance of trapped in local minima. The PSO is used for increasing 
convergence rate and avoidance of trapping in local minima. In the recent past, various  
 

 

Figure 1:  ANFIS architecture for two-rule two-input sugeno model. 
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methods [6], [7] and algorithms have been applied to the optimization of structures [8]–[13]. 
However in this paper the optimization algorithms are used to obtain the best prediction 
model for traffic induced vibration. 
 

3  TRAFFIC-INDUCED GROUND VIBRATION PREDICTION 

3.1  Data set 

The data was divided into training and testing datasets. Training datasets contain 
measurements of the vibration caused by trucks. In this case, data was collected using noisy 
measurements, therefore the training data cannot be representative of all the features of the 
data that will be presented in the model. For model validation we use testing data. In this 
model, 82 measurements from several sites were used. Among those, 57 evaluations (70%) 
were used for the training of the ANFIS model, whereas 25 data sets (30%) were chosen for 
checking the model. Tables 1 and 2 represent training and testing data. The frequencies and 
the velocity of vibration depend on numerous factors, such as pavement conditions 
(especially damage and roughness), the speed and weight of vehicles, a vehicle suspension 
system, the type of soil, the season, the distance between the road and the building and the 
type of the building. 
     The variables in the ANFIS model are: 

- distance form source of vibration to geophone d (m); 
- mass of vehicle m (tons); 
- type of the speed bump Type (1- trapezoid bump, 2- trapezoidal platform, 3- sinusoid 

bump); 
- height of the speed bump t (cm). 

     The speed of the vehicle was v =30 km/h in all cases. The supporting soil type was silty 
clay which is very unlikely to settle when subjected to traffic induced vibration. It should be 
noted that all measurements were performed in the summer. Therefore, the seasonal variation 
of soil conditions is not considered on vibration levels. Moreover, the road was resurfaced 
before measuring the vibrations.  

3.2  Verification of the model for traffic-induced ground vibration prediction 

To test and validate the ANFIS models, a data set was selected that was not used during the 
training of the network. The ANFIS method is an alternative to existing methods for 
prediction of traffic-induced ground vibration. However, results need to be generalized as 
present work is valid only for considered data. Comparison of measured and predicted peak 
particle velocity PPV (mm/s) values for training data and testing data are shown in Figs 2 
and 3, respectively. The objective function of the ANFIS model is to minimize the root mean 
square error (RMSE) between the measured and the predicted data. The performance 
criterion selected for the comparison between the measured and the predicted data is also the 
mean of squares due to error (MSE) and the standard deviation error. It turns out that the 
hybrid GA-ANFIS prediction model outperforms the commonly used predictors and 
conventional ANFIS. Therefore the results of GA are only presented in this paper. Table 3 
show the comparison of GA-ANFIS model, PSO-ANFIS model and conventional-ANFIS 
model. 
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Table 1:  Training data. 

d 
(m) 

m 
(tons) 

Type 
(-) 

t 
(cm)

PPV 
(mm/s)

d 
(m)

m 
(tons)

Type 
(-)

t 
(cm) 

PPV 
(mm/s) 

0.8 20 2 12 4.064 0.8 20 2 12 4.445 

2.5 12.5 3 6 0.254 0.5 12.5 3 6 6.477 

0.8 20 3 5 0.381 0.8 20 1 10 0.508 

8.4 20 1 10 0.254 0.8 20 1 10 0.508 

8.4 20 1 10 0.254 2 12.5 2 12 0.635 

2 12.5 2 12 0.508 0.8 20 3 5 0.381 

0.5 12.5 3 6 6.096 2 12.5 2 12 0.535 

1 12.5 3 6 3.048 8 20 3 5 0.254 

4.8 12.5 2 12 0.254 5.9 20 2 12 0.254 

4.8 12.5 2 12 0.254 5.9 20 2 12 0.254 

1 12.5 3 6 4.826 8.4 20 1 10 0.254 

0.8 20 2 12 4.826 5.9 20 2 12 0.254 

7.8 12.5 2 12 0.254 2.5 12.5 3 6 0.254 

0.8 20 1 10 0.254 3 12.5 3 6 0.127 

1 12.5 3 6 4.699 5 12.5 2 12 0.508 

8.4 20 1 10 0.254 5.9 20 2 12 0.254 

3 12.5 3 6 0.254 2 12.5 2 12 0.508 

5 12.5 2 12 0.635 3 12.5 3 6 0.254 

7.8 12.5 2 12 0.254 7.8 12.5 2 12 0.254 

0.8 20 3 5 1.397 3 12.5 3 6 0.254 

5 12.5 2 12 0.508 8.4 20 1 10 0.127 

0.8 20 1 10 0.254 5 12.5 2 12 0.508 

0.8 20 2 12 4.191 0.8 20 3 5 1.27 

1 12.5 3 6 3.683 0.8 20 3 5 0.635 

0.8 20 1 10 0.254 0.8 20 1 10 0.381 

5.9 20 2 12 0.254 4.8 12.5 2 12 0.172 

4.8 12.5 2 12 0.254 8 20 3 5 0.254 

0.8 20 2 12 2.921 8.4 20 1 10 0.254 

     1 12.5 3 6 3.683 
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Table 2:  Testing data. 

d 
(m) 

m 
(tons) 

Type 
(-) 

t 
(cm)

PPV 
(mm/s)

d 
(m)

m 
(tons)

Type 
(-)

t 
(cm)

PPV 
(mm/s) 

0.8 20 2 12 3.302 0.8 20 2 12 3.81 

0.8 20 1 10 0.254 5.9 20 2 12 0.254 

3 12.5 3 6 0.254 5.9 20 2 12 0.254 

0.8 20 3 5 1.524 3 12.5 3 6 0.254 

1 12.5 3 6 4.826 8.4 20 1 10 0.254 

8 20 3 5 0.254 3 12.5 3 6 0.254 

8.4 20 1 10 0.254 8.4 20 1 10 0.254 

8 20 3 5 0.254 8 20 3 5 0.254 

0.8 20 1 10 0.254 7.8 12.5 2 12 0.254 

0.8 20 1 10 0.254 1 12.5 3 6 3.429 

1 12.5 3 6 4.445 7.8 12.5 2 12 0.254 

5 12.5 2 12 0.653 8 20 3 5 0.254 

     3 12.5 3 6 0.254 
 

 

Figure 2:  Comparison of measured and predicted PPV (mm/s) values for training data. 
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Figure 3:  Comparison of measured and predicted PPV (mm/s) values for testing data. 

Table 3:    Comparison of GA-ANFIS model, PSO-ANFIS model and in terms of goodness 
of fit. 

Training MSE RMSE Error St. D. 
GA-ANFIS 0.86986 0.93266 0.94074 
PSO-ANFIS 1.6401 1.2807 1.2921 
Conventional-ANFIS 1.0766 1.0376 1.0468 
Testing MSE RMSE Error St. D. 
GA-ANFIS 0.60127 0.77542 0.75194 
PSO-ANFIS 2.2993 1.5164 1.5442 
Conventional-ANFIS 0.9339 0.9664 0.9854 

4  CONCLUSION 
Traffic induced vibrations under the described conditions were significantly lower than the 
most stringent guide value for heritage structure damage specified by existing standards. We 
found that this calculation provides a good estimate for predicting vibrations caused by heavy 
vehicle traffic. An artificial neural network and the neuro-fuzzy technique were used for 
modelling the ground vibration. The accuracy of the presented model could be improved with 
more measurements. It is found that an artificial neural network and the neuro-fuzzy 
technique have better prediction capability than a conventional peak particle velocity 
predictor. 
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