
Contact mechanical problem for arbitrary 
3D loading histories 

V. V. Aleshin & O. Bou Matar 
Institute of Electronics, Microelectronics and Nanotechnologies,  
Lille, France 

Abstract 

This communication is concerned with the method of memory diagrams 
developed for solving a problem of frictional elastic contact. Our goal is to 
establish a link between contact force and displacement for a general plane 
contact between two arbitrarily-shaped bodies; rolling and torsion are not 
considered. Description of mechanical interactions between two solids in contact 
in the presence of friction is a non-trivial task since the desired force-
displacement relationships have hysteretic (memory-dependent) character. 
Arbitrarily changing applied force (or displacement) creates a cumbersome shear 
stress distribution in the contact zone that has to be adequately parameterized and 
accounted for. In that regard, it is suggested to consider, instead of complex 
shear stress distributions, a simpler functional form called memory diagram that 
contains the same memory information. We have established two integral 
relationships that link the force and displacement vectors with that internal 
functional dependency. The integral relationships are supplemented with two 
other evolution rules for memory diagrams that eventually follow from the 
Coulomb friction law. The memory diagram is updated with the help of these 
rules following a given force history. Then the calculated memory diagram is 
used to update the history of displacement i.e. to produce the desired force-
displacement relationship. 
Keywords: friction, contact mechanics, Hertz–Mindlin, frictional contact, 
frictional hysteresis, general loading history, arbitrary loading history. 
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1 Introduction 

The history of the contact problem started in the 1880s when H. Hertz published 
the classical solution for two elastic spheres compressed by a normal force [1]. 
In absence of adhesion and plasticity, this solution is fully reversible. However, 
the addition of a tangential force and friction [2, 3] makes the problem hysteretic 
and memory-dependent. It was noted [3] that even a small tangential force acting 
on two pre-compressed spheres results in appearance of a slip annulus at the 
periphery of the contact circle where the surfaces are compressed weakly. The 
coexistence of the stick (central) and slip (peripheral) zones actually means 
mixed-type boundary conditions that correspond to zero local tangential 
displacement in the central region and, in the slip annulus, to the Coulomb 
friction law written for local tangential () and normal () stresses, = (here  
is friction coefficient considered as a constant for two contacting materials). The 
increase in the tangential force results in the slip propagation towards the contact 
centre. If now the tangential force starts decreasing, a new slip annulus develops 
at the contact periphery in which =-. Hence, the same values of the normal 
(N) and tangential (T) forces can correspond to different distributions of stresses 
and displacements in the contact zone. This fact explains a complex hysteretic 
character of the solution. 
     Allowing the normal force to evolve [4] adds a new complexity factor to the 
problem. The matter is that the slip zone always arises at the contact border 
where =0 and propagates inward, but, if the normal force increases, the contact 
border itself propagates outward. The result depends on the value of the 
derivative dN/dT. 
     Finally, the introduction of a general contact geometry instead of spherical 
profiles introduces even more complexity into the description. Indeed, for two 
rough surfaces, the contact zone consists of a multitude of contact spots having 
random geometry. For changing normal force, those contact spots can merge or 
split. Further, each of them supports slip and stick zones, and traction 
distribution in the stick zones can contain residual stresses left from the previous 
moments of evolution. With continuously varying normal and tangential loading, 
this complicated picture continuously evolves. 
     Here we propose a solution to such a general mechanical problem which is 
based on known works [4–9] as well as on original developments [10–14]. The 
geometric aspect of the problem can be successfully dealt with by using the 
Reduced Elastic Friction Principle (REFP, [5–9]) that, under some restrictions, 
makes it possible to replace an arbitrary contact geometry by a pair of 
axisymmetric profiles. Then, following the original Method of Memory 
Diagrams (MMD) we introduce an internal functional dependency called 
memory diagram that replaces a cumbersome traction distribution in the contact 
zone but contains the same information. Further, the MMD enables us to link the 
tangential force and tangential displacement via two integral equations each 
depending on the memory diagram. Finally, generalizing an incremental 
procedure established in [4], we develop an algorithm that produces a force-
displacement relationship for an arbitrary loading history. 
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2 Reduced elastic friction principle 

The REFP [5–9] is an important theorem of contact mechanics which states that, 
for constant loading and for a wide range of contact geometries, the tangential 
force and displacement can be expressed through the normal force and 
displacement. This principle is illustrated in fig. 1 (on the left) for axisymmetric 
bodies. Consider two situations: first one when the system is loaded only by 
normal force Q, and second one when both force components, N and T, are 
applied (N>Q). The force values are chosen in such a way that the stick zone in 
the second case coincides with the contact zone in the first case. Then the 
tangential force and displacement in the second situation are given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The reduced elastic friction principle (on the left) makes it possible 
to replace an arbitrary geometry with an equivalent axisymmetric 
profile with the same normal reaction. 
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where the dependency of the normal displacement on the normal force a=a(N) is 
considered as known, and  is a material constant that depends only on Poisson’s 
ratio , =(2-)/(2(1-)). 
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     An important feature of eqn (1) is that it does not contain any geometry-
related characteristics. Thus a simple consequence of the REFP is a statement 
that, for two contact systems with the same normal response, the tangential 
responses are also identical. Consequently, a contact between surfaces of 
arbitrary topography can be replaced by an equivalent axisymmetric system. 

3 Method of memory diagrams 

The MMD (see [14] for detailed proofs) explained below represents an extension 
of the solution eq. (1) for arbitrary loading history i.e. when forces N and T are 
not constant but change in 3D so that loading is actually described by vector 
(N, Tx, Ty). The principal MMD statement asserts that there exists a function 
 D   called memory function or memory diagram such as two relationships, 
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hold simultaneously. This property (called here rule I) corresponds to the force 
balance equation; the contact friction force equilibrates the external tangential 
force. In addition, two other statements are valid. The second one (rule II) claims 

that   1D  


 that eventually follows from the Coulomb friction law. 

     The rule III reflects the fact that slip (if occurs) propagates from the contact 
boundary (weakly compressed zone for convex contact shapes) towards the 
contact centre (strongly compressed zone). As far as memory diagrams are 
concerned, this rule suggests that a possible adjustment of the memory function 

 D 


 in the purpose of complying with the rule I is made by setting   1D  


 

on a final segment Q<<N of the memory diagram. This final segment 
corresponds to the presence of slip that propagates inward until, by setting of Q, 
the rule I is satisfied. 
     Eqns (2) and (3) are integral equations whose approximate solution can be 
obtained for small but final force or displacement increments. The choice of 
arguments depends on a physical situation, e.g. for a force-driven system N and 

T


 are known while a and b


 are to be calculated. Below we discuss an 
implementation of the method for an arbitrary 2D loading history for a force-
driven system. In that case, eqn (2) is used for updating the memory diagram 
while the former produces the unknown displacement via eqn (3). 
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3.1 MMD: 2D implementation 

The MMD algorithm developed for final force increments for 2D loading i.e. 
when normal and tangential forces always lay in one plane is shown in fig. 2. 
The algorithm includes two binary choices. Firstly, if N is positive (set (a)), the 
memory diagram extends by the respective interval N<<N+N on which the 
memory function has to be defined keeping the equality eqn. (2) (in 2D case 
vector signs in eqns. (2) and (3) have to be omitted). Further, if T N  , 

eqn. (2) can be satisfied by updating the memory function only on the new 
interval as indicated in set (b), so that the area under the newly defined memory 
function equals T/. In contrast, if the latter inequality does not hold, even 
allocating the maximum possible area on the new interval is not enough to 
compensate for T (set (c)). Indeed, in set (c), those maximum area is T1/=N  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: MMD algorithm in 2D. 
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because of the rule II,   1D   , and no more tangential force can be 

“absorbed”. In order to take into account the remaining part T2=T-T1, we 
have nothing but to use rule III that explains how to update the memory function 

by assuming slip i.e. segment on which   1D   . In accordance to that rule, 

point A' moves to the left and sets   1D    at its right until the remaining 

force increment T2 is equilibrated. 
     In the case when the inequality N>0 is not fulfilled, the memory diagram 
shrinks by the value of N  thus releasing some tangential force T1 previously 

“saved” in the contact system (set (d)). The remaining value T2=T-T1 is 
equilibrated by assuming the slip propagation as before (set (e)). 
     The application of the algorithm shown in fig. 2 allows us to update the 
memory diagram for known force increments N and T in such a way that the 
force balance eqn (2) is kept. Then the updated memory diagram is used for 
calculating the tangential displacement according to eqn (3). 
     The above reasoning shows that a memory diagram can contain both straight 
segments with   1D    corresponding to slip and curvilinear segments 

obtained in a situation (b) (in fig. 2 the increment values are highly exaggerated). 
This suggests an economic way of representing a memory diagram for numerical 
implementation (see fig. 3). We introduce two kinds of nodes, black and grey, 
and define the memory function between them. Black point (i, Di) indicates that 
on the interval i-1<<i function D equals Di; grey point (i, Di) indicates that 
on the interval i-1<<i function D has to be interpolated between points (i-

1, Di-1) and (i, Di) using some interpolation method (linear or of higher order). 
Saving grey memory points is a memory-consuming process since the distances 
between the points correspond to force increments N and are small. As for the 
black segments in fig. 3, only the limiting points are saved that makes the 
scheme much more efficient in comparison to, say, a simple equidistant grid of 
fixed points. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Possible discrete representation of the memory diagram. 
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     Compensating for T at each step of the algorithm is possible via explicit 
computation. Indeed, adjustment of the length of the memory diagram according 
to a current increment N and calculation of the related T1 is an explicit 
operation since at each interval i-1<<i, function D() is given by an analytical 
expression. Similarly, in order to account for slip and to calculate Q (the 
boundary between stick and slip zones, see fig. 3) we successively consider 
segments i-1<<i with reducing i until the segment containing Q is found. 
Then the actual Q is analytically evaluated. 

3.2 MMD: 3D implementation 

A 3D implementation of the MMD is similar except the memory diagram 
consists of two functions Dx() and Dy() (fig. 4). The algorithm first adjusts the 

length of the memory diagram and calculates the related 1T


. If now the total 

increment T


 is not fully equilibrated, slips starts propagating from the contact 
boundary =N towards the centre =0. The remaining unbalanced force 

2 1T T T    
  

is known and we have to compensate for it by finding a proper 

Q. To do so, first an interval (black or grey, see the interpolation rule above) that 
contains Q has to be found. Despite the number of equations now equals two but 
not one as in the 2D case, the interval is still possible to locate explicitly. In that 
purpose, we introduce the angle  of the slip direction and write the force balance 
equation in the form 
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Figure 4: Vector memory function components Dx() and Dy() in the 3D 
loading case. 
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where  ,
old
x yD   is the previous (i.e. not yet updated at this step) memory 

diagram. By excluding  we obtain a single equation and then consider function 
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that has different signs at the ends of the interval containing Q. The final 
computation of actual Q on that segment is done analytically since the memory 

function  D 


 is explicitly given. 

4 Results and examples 

Below we show a number of curves b(T) for some input dependencies N(t) and 
T(t) in the 2D loading case. Fig. 5 illustrates a particular case when two 
arguments, N and T, are linked via a functional relation, so that actually there is 
only one independent argument in the system. Curve b(T) in fig. 5 is typical 
for one-parametric hysteresis [10–12], e.g. it exhibits closed loops for periodic 
T(t); partial increase in the argument T on the globally decreasing branch 
results in appearance of an inner loop, etc. Note that the inner loop has the 
property of the end-point memory which means that the curve exits the loop 
with the same tangent as just before entering it. 

Figure 5: Tangential force-displacement curves for particular loading histories 
shown in the inset, in the case when N and T are linked via 
functional dependency (one-parametric hysteresis). Henceforth N0 
denotes a characteristic value of the normal force, and a0=a(N0). 
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Figure 6: Tangential force-displacement curves for particular loading histories 
shown in the inset, in the case when N and T are independent (two-
parametric hysteresis). 

Figure 7: Input force curve (Tx,Ty) (black, normalized on N0) and output 
displacement curve (bx,by) (gray, normalized on a0). 
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     However, in a more general case when two arguments, N and T, are 
independent, the hysteretic behaviour differs considerably. Since variations in N 
are not linked with T(t)-protocol, even for periodic T(t) the “loops” are not 
closed. Indeed, fig. 6 shows that the same T(t)-history produces a curve in which 
all monotonous parts are shifted, bent, etc. Of course, generating such curves via 
the direct analysis of traction and without use of the MMD is an extremely 
cumbersome task. 
     In the case of loading in 3D is more appropriate to show the solution (bx,by) 
for the excitation (Tx,Ty) on the same plot (fig. 7). Here time dependences of all 
three force components (Tx,Ty,N) are harmonic with different periods. Again, the 
displacement curve has a complex behaviour; its calculation by means of the 
MMD is fully automated. 

5 Discussion 

Below there are some remarks that concern the solution to the contact problem 
for an arbitrary 3D loading presented here. 

a) The method discussed here assumes that the normal solution a=a(N) is
known. Such solutions for some regular contact geometries can be
found in books [15, 16] on contact mechanics. For randomly rough
surfaces, we refer the reader to recent papers [17–20] (see also [14] for
a possible derivation of a=a(N)).

b) All geometry-related features are taken into account by the normal
solution a=a(N); the rest of the theory is formulated independently of
contact geometry. The possibility of doing so follows from the reduced
elastic friction principle.

c) This principle assumes some conditions discussed in [5–9], such as
neglect of the effects of dissimilarity between the bodies, etc.

d) Other assumptions are similar to those of the Hertz–Mindlin theory.
They include purely elastic deformations, absence of adhesion, absence
of torque, plane contact, aligned and non-rotating normals to all contact
spots, etc. In fact, the present method can be considered as an extension
of the Hertz–Mindlin theory for an arbitrary 3D loading and a wide
range of geometries.

e) Although the solution is computer-assisted, we still can consider it as
analytical for final force (or displacement) increments. The algorithm
shown in fig. 2 just selects an appropriate branch of the analytical
solution in accordance to the relationships between the force or
displacement increments.

f) As many other models in theoretical contact mechanics, our theory
assumes the friction coefficient to be a universal constant for two
materials in contact.

g) The theory can be applied as a basis for a description of materials with
internal contacts (geomaterials or nondestructive testing of damaged
pieces or components), as well as for designing new nonlinear
metamaterials with desired properties.
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