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Abstract

In this contribution, a methodology for calibration and validation of a finite
element model for dynamic response of laminated glass units with viscoelastic
interlayer is proposed. The model is based on a refined theory in which the
adjacent layers are connected by kinematic constrains ensuring the inter-layer
compatibility. The time-dependent behavior of the interlayer is accounted for by
the generalized Maxwell model. The resulting system is solved by the Newton
method with consistent linearization and allows for quantification of natural
frequencies and eigenshapes. The calibration of the generalized Maxwell chain
exploits the experimental master curve obtained from the rheometer test while the
analysis of the dynamic response of glass beam serves for model validation.
Keywords: laminated glass, viscoelasticity, generalized Maxwell model, rheometer
test, finite element method, natural frequency, dynamic analysis.

1 Introduction

Beside its traditional use in form of infill panes, glass gained popularity also
as structural material in the past decades. This was possible mainly due to the
invention of laminated glass consisting of glass layers connected with one or more
polymer interlayers. The requirement for the glass components to bear external
loading called for better understanding of the mechanical response under static,
dynamic and impact loading. For safety reasons predicting the response of the
glass units with one or more glass layers already fractured should also be possible.

In this paper we focus on a viscoelastic model of a three-layer laminated glass
for dynamic analysis with emphasis on the development of methodology for its
calibration based on rheometer measurements. Attention is limited to a model

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press

doi:10.2495/HPSM160221

This paper is part of the Proceedings of the 2  International Conference on nd

High Performance and Optimum Design of Structures and Materials (HPSM 2016) 
www.witconferences.com 



Figure 1: Generalized Maxwell model of viscoelastic material.

of naturally vibrating beam. This simple model will serve for validation of the
proposed concepts and was chosen because the corresponding laboratory test is
quite straightforward to perform. Details can be found in [1, 2].

In this contribution we assume the laminated glass to be composed of two layers
of strengthen glass and a single polymer interlayer. As usual, glass is described as
linear elastic by the Young modulus E and the Poisson ratio ν. The behavior of
the polymer interlayer is assumed viscoelastic and its mechanical properties are
specified by the generalized Maxwell chain.

Lacking at present the experimental results, the paper concentrates on the
theoretical grounds of the proposed model while verification against experimental
data will be presented elsewhere. It is divided into two parts. The first part discuses
the methodology for calibrating the parameters of the generalized Maxwell
chain characterizing viscoelastic properties of the polymer interlayer based on
experimental master curve obtained from a rheometer test. The second part
formulates a finite element model of a glass beam with polymer interlayer suitable
for a dynamic analysis and numerical determination of natural frequencies and
modal shapes.

2 Viscoelastic material

In this section the complex viscoelastic shear modulus of the generalized Maxwell 
chain is derived. A stress-strain relationship described by the generalized 
Maxwell chain can be visualized as a parallel connection of single spring with 
stiffness G∞ and several Maxwell cells indexed by i = 1 . . . n, see Fig. 1. The 
Maxwell cell itself is a serial connection of a spring of stiffness Gi and a purely 
viscous damper of viscosity ηi.

For harmonic loading the stress and strain are defined in terms of complex values
σ∗ and ε∗ and their relationship is given by

σ∗ = G∗(ω)ε∗, (1)

where

G∗(ω) = G′(ω) + iG′′(ω), (2)
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is the complex dynamic shear modulus, i =
√
−1 is the imaginary unit and

G′(ω) = G∞ +
n∑
i=1

G′i(ω), (3)

G′′(ω) =
n∑
i=1

G′′i (ω), (4)

are the storage and loss moduli of the Maxwell chain, respectively. The quantities
G′i and G′′i are the storage and the loss shear moduli of the ith Maxwell cell which
depend on the angual frequency ω and the parameters of the cell

G′i(ω) =
τ2i ω

2Gi
1 + τ2i ω

2
, G′′i (ω) =

τiωGi
1 + τ2i ω

2
, (5)

where the characteristic time τi of the ith Maxwell cell reads

τi =
ηi
Gi
. (6)

This form is also referred to as the Prony series representation of the dynamic
modulus.

3 Calibration of the generalized Maxwell chain

The parameters of the generalized Maxwell chain can be calibrated using the data
from a rheometer test. The data consist of pairs of storage and loss moduli obtained
for the selected angle of frequency sweep and particular temperature. These results
then can be used to construct master curves for individual moduli [3]. Here, we
shall consider the master curve as a collection of finite number of experimentally
derived storage and loss moduliG

′
j andG

′′
j for a particular set of angular frequency

ωj , j = 1 . . .m. The task now is to determine the shear moduli Gi in the ith cell
of the generalized Maxwell chain while assuming fixed values of characteristic
relaxation times τi such that these are reasonably distributed in the frequency band
of interest. Formally, we want to minimize

F (〈Gi〉, G∞) =
m∑
j=1

(G′(ωj)−G
′
j)

2 +
m∑
j=1

(G′′(ωj)−G
′′
j )

2, (7)
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by setting

∂F

∂Gi
=

m∑
j=1

2(G′(ωj)−G
′
j)

τ2i ω
2
j

1 + τ2i ω
2
j

+
m∑
j=1

2(G′′(ωj)−G
′′
j )

τiωj
1 + τ2i ω

2
j

= 0, (8)

∂F

∂G∞
=

m∑
j=1

2(G′(ωj)−G
′
j) = 0. (9)

Taking into account equations (3) and (4) we can formulate the above conditions
as a system of n+ 1 linear equations written as

Ax = b, (10)

with n+ 1 unknown optimal shear moduli stored in the column vector

x = {G1, G2, . . . , Gn, G∞}T . (11)

The components of the matrix A and the right hand side vector b are provided by

Aij =

m∑
k=1

τ2i ω
2
k

1 + τ2i ω
2
k

τ2j ω
2
k

1 + τ2j ω
2
k

+

m∑
k=1

τiωk
1 + τ2i ω

2
k

τjωk
1 + τ2j ω

2
k

, (12)

Ai n+1 = An+1 i =
m∑
k=1

τ2i ω
2
k

1 + τ2i ω
2
k

, (13)

An+1n+1 = m, (14)

bi =
m∑
k=1

τ2i ω
2
k

1 + τ2i ω
2
k

G
′
k +

m∑
k=1

τiωk
1 + τ2i ω

2
k

G
′′
k , (15)

bn+1 =
m∑
k=1

G
′
k. (16)

where the i, j = 1 . . . n.

4 Finite element model of the three layer beam

Having derived the parameters of the generalized Maxwell chain together with the
expression for the complex dynamic modulus we can start formulating the finite
element model of a vibrating beam. Assuming the nodal displacements arranged
in a column vector re = {u1, w1, ϕ1, u2, w2, ϕ2}T the stiffness matrix of a single
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Figure 2: Composition of beam elements into super-element representing the
three-layer material.

layer beam based on Mindlin’s theory is written as

Ke =



EA
L 0 0 −EAL 0 0

0 GA∗

L −GA
∗

2 0 −GA
∗

L −GA
∗

2

0 −GA
∗

2
GA∗L

4 + EI
L 0 GA∗

2
GA∗L

4 − EI
L

−EAL 0 0 EA
L 0 0

0 −GA
∗

L
GA∗

2 0 GA∗

L
GA∗

2

0 −GA
∗

2
GA∗L

4 − EI
L 0 GA∗

2
GA∗L

4 + EI
L


, (17)

where E and G are the Young and shear moduli, A = bh is the cross section area,
A∗ = 5

6A is the effective area of the rectangular cross section, I = 1
12bh

3 is the
areal moment of inertia and L is the element length. The element mass matrix
reads

Me =



ρAL
3 0 0 ρAL

6 0 0

0 ρAL
3 0 0 ρAL

6 0

0 0 ρIL
3 0 0 ρIL

6

ρAL
6 0 0 ρAL

3 0 0

0 ρAL
6 0 0 ρAL

3 0

0 0 ρIL
6 0 0 ρIL

3


, (18)

where ρ is the density of the material. Considering the layer composition of the
super-element with nodes 1, 3 and 5 on the left end and nodes 2, 4 and 6 on the
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right end, see Fig. 2, the stiffness matrix and the mass matrix become

Kse =

Ke,1 0 0

0 Ke,2 0

0 0 Ke,3

 , (19)

Mse =

Me,1 0 0

0 Me,2 0

0 0 Me,3

 . (20)

Although using Lagrange multipliers to account for the connection between
adjacent layers is more flexible, see [4], we introduce stiff kinematic constraints for
their simplicity. The relative vertical displacements of the layers are constrained by

w1 = w3 = w5, (21)

w2 = w4 = w6. (22)

We also assume a zero slip on the interfaces between the layers by setting

ϕ1
h1
2

+ u1 = −ϕ3
h2
2

+ u3, (23)

ϕ3
h2
2

+ u3 = −ϕ5
h3
2

+ u5, (24)

ϕ2
h1
2

+ u2 = −ϕ4
h2
2

+ u4, (25)

ϕ4
h2
2

+ u4 = −ϕ6
h3
2

+ u6. (26)

Finally, choosing the master degrees of freedom

rm = {u1, w1, ϕ1, u5, ϕ5, u2, w2, ϕ2, u6, ϕ6}T , (27)

the reduced element stiffness matrix can be expressed as

Kre = TTKseT. (28)

The transformation matrix T derived from the constraints (21)–(26) is listed in the
Appendix.

5 Dynamic analysis

The dynamic analysis of a vibrating beam starts from formulating the equation of
motion

Kg(ω)rg(t) +Mg r̈g(t) = 0, (29)

where Kg and Mg are the global stiffness and mass matrices obtained from the
reduced element matrices Kre and Mre by localization. For harmonic oscillations
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we assume the displacement and rotations in the form

rg(t) = eiωtrg. (30)

Their second derivatives, i.e. accelerations thus become

r̈g(t) = −ω2eiωtrg. (31)

The equation of motion then rewrites as

(Kg(ω)− ω2Mg)rg = 0. (32)

Any non-zero solution rg of this system can occur only for angular frequencies ω
which satisfy

det(Kg(ω)− ω2Mg) = 0. (33)

Note that, due to the complex stiffness modulus in the element with viscoelastic
layer, the stiffness matrix is complex-valued quantity and depends additionally on
the angular frequency.

For the middle layer, which is assumed to behave viscoelastically, we split the
complex shear modulus into the constant real part G∞ and the complex frequency
dependent part Gω

G∗(ω) = G∞ +Gω(ω). (34)

This also allows us to separate the real-valued, ω-independent part of the
global stiffness matrix from the complex-valued and ω-dependent one. Assuming
Eω(ω) = 2(1 + ν)Gω(ω) we write

Kg(ω) = Kg,∞ +Gω(ω)Kg,ω. (35)

The strategy for the solution of viscoelastic beam is described in [5] and employs
the Newton–Raphson method with initial values being the natural frequency and
the eigenshape of the chosen mode obtained for a purely elastic beam. Thus in the
first step we find the natural frequencies and eigenshapes for the beam with the real
ω-independent part of the global stiffness matrix Kg,∞, i.e. we search for nonzero
solutions of

det(Kg,∞ − ω2Mg)rg = 0, (36)

which represents the generalized eigenvalue problem for pair (Kg,∞;Mg). The
obtained eigenvalues correspond to squares of natural angular frequencies and
the eigenvectors correspond to shapes in which the beam vibrates with these
frequencies.
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The Newton–Raphson method is applied next. Recall, that the method searches
for a vector x such that the vector valued function f satisfies

f(x) = 0. (37)

This is achieved by iterating

xk+1 = xk − J−1(xk)f(xk). (38)

In our application the vector of unknowns consists of components of rg and the
angular frequency ω:

x = {rg, ω}T . (39)

Its initial values rg0 and ω0 are obtained from the eigenvalue decomposition as
disused above. The components of function f(x) consists of the left hand side
expressions of the equation of motion (33) regularized by the requirement of
orthogonality between the initial eigenshape and its increment

fi(x) =

n∑
j=1

(Kg,ij(ω)− ω2Mg,ij)rg,j , (40)

fn+1(x) = rTg0(rg − rg0). (41)

The components of the Jacobian matrix J(x) are defined

Jij(x) = Kg,ij(ω)− ω2Mg,ij , (42)

Ji n+1(x) =
n∑
j=1

(
dGω(ω)

dω
Kg,ω,ij − 2ωMg,ij

)
rg,j , (43)

Jn+1 j(x) = rg0,j , (44)

Jn+1n+1(x) = 0, (45)

where

dGω
dω

= −
n∑
j=1

iτjGj
(τjωj − i)2

(46)

with i being the imaginary unit. Note, that the components of the vector x, although
starting from real initial values, become complex numbers after the first iteration.
If desired this procedure can be repeated for initial frequency found from (36).

6 Conclusions

This paper presented a numerical strategy for calibration of the parameters defining
the mechanical properties of the viscoelastic interlayer connecting two glass panes
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into laminated glass unit. The viscoelastic material is described by the generalized
Maxwell model which yields a complex dynamic modulus in a form that is suitable
for finite element model of a laminated beam under dynamic excitation. The
analysis of natural harmonic vibrations requires solving the frequency-dependent
eigenvalue problem in the complex domain. This is achieved by exploiting
the Newton iterative method. The formulation of the finite element model of
naturally vibrating beam was motivated by accessibility of corresponding physical
experiment against which the model of the layered element can be validated. This
will be presented in our forthcoming paper.
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Appendix

Transformation matrix maps all degrees of freedom in super element rs =
{u1, w1, ϕ1, u3, w3, ϕ3 u5, w5, ϕ5, u2, w2, ϕ2 u4, w4, ϕ4, u6, w6, ϕ6}T to the
master degrees of freedom rm = {u1, w1, ϕ1, u5, ϕ5, u2, w2, ϕ2, u6, ϕ6}T
of the reduced element. Taking into account the constraints introduced by
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Eqs. (21)–(26), this matrix can be expressed as:

T =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

1
2 0 h1

4
1
2 −h3

4 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

− 1
h2

0 − h1

2h2

1
h2
− h3

2h2
0 0 0 0 0

0 0 0 0 0 1
2 0 h1

4
1
2 −h3

4

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 − 1
h2

0 − h1

2h2

1
h2
− h3

2h2

0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1



.

(47)

254  High Performance and Optimum Design of Structures and Materials II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press




