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Abstract 

The purpose of this work is to evaluate the anisotropic behaviour of an AA2024-
T351 thick plate using three different multi-scales approaches: a macroscopic 
unified model (based on HILL 48 yield loci), a multi-mechanisms model and a 
polycrystalline one. The experimental results obtained from uniaxial tensile tests 
are first described. Thereafter, theoretical formulations and identification of 
studied numerical elastoplastic models are presented. Finally, finite element 
simulations of tensile tests and analysis of drawing process are performed. 
Keywords: thick sheet anisotropy, multi-scale modelling, numerical simulation, 
aluminium alloy. 

1 Introduction 

Recently, different industries faced the challenge of implementation of aluminium 
alloys in order to produce components with different formability characteristics. 
In aeronautical manufacturing, due to the need for low-weight aircraft, aluminium 
alloy elements are used characterized by good mechanical resistance and 
formability. Generally this material is obtained in sheet form by hot and cold 
rolling forming processes which creates plastic anisotropy. It is then important to 
understand the anisotropic mechanical behavior characterising a thin [1] or thick 
sheet and ensure the reliability of the numerical models predictions in order to be 
integrated in an optimal design analysis [2]. This work presents an introduction of 
the study of the three-dimensional anisotropy of an aluminium alloy.  So the paper 
starts with two specific cases of a 3D plastic anisotropy: plane and normal, 
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analyzing three different elasto-plastic numerical approaches: a unified model, a 
multi-mechanism model and a polycrystalline one [3–10]. To demonstrate their 
feasibility and to identify the most accurate model describing the plastic 
anisotropy, a lot of comparisons are realized with the experimental data obtained 
from tensile tests performed for specimens with a thickness of 3 mm along 
different directions to the rolling direction. Using the three different approaches 
numerical finite element (FE) analyses of tensile tests and drawing process 
simulations are presented. 

2 Experimental tensile tests 

Uniaxial tensile tests were performed for an AA2024-T351 aluminium alloy plate 
at different directions: 0°, 30°, 45°, 60°, 75° and 90° with respect to the initial 
rolling direction (0°), using an INSTRON machine (50KN load cell), recording 
both the loads and displacements for an initial strain rate of 2x10-3s-1.  

2.1 The sample material 

In this work, all specimens were cutting out from the thick aluminium alloy rolling 
plate (thickness of 3mm).  
     Figure 1 shows the used specimen’s geometry, the corresponding dimensions 
and figure 2 pictured the specimen mounting. 
 

 
Figure 1: Plane specimen dimensions (in mm). 

  

Figure 2: INSTRON universal testing machine and the tasks points (A, B, C, 
D) positioned on the tensile specimen surface. 
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2.2 Experimental results and classical analysis  

Axial load and displacements in the longitudinal and transverse directions were 
recorded during the experiment using a speed camera measuring point’s 
displacements throughout the material traction (figure 2). In fact, the camera 
followed two points A and B along the y axis of loading (having an initial distance 
l0 between them) and two points C and D along the x axis (spaced by an initial 
distance b0). From digital images of the specimen is performed evolution of each 

local distance and computed the corresponding total strains 
t
yy , t

xxε . The plastic 

strain is obtained by assuming the partition of the total strain of an elastic part and 

a plastic one i.e. t e pε =ε +ε , giving: p t eε =ε -ε . The plastic strain according to 
the three orthotropic axes (x,y,z) can then be calculated as follows:

-p t
yy yy yyε =ε σ / E ,

p t
xx xx yyε =ε +υσ / E  and  p p p

zz xx yyε =- ε +ε  if assumption of 

plastic incompressibility. Then both stress-strain curves and Lankford coefficients 

(defined by
p p p
xx xx xx
p p p
zz zz zz

ε dε ε
r= =
ε dε ε





) have been computed from different loadings 

directions, especially for 0°, 45° and 90°. As can be seen in figure 3, a similar 
material behavior is obtained between the tensile directions 45° (DD) and 90° 
(TD). 
 

  

Figure 3: Experimental true stress–true strain curve along the directions 0°, 45° 
and 90° of the AA2024-T351 thick plate (present work). 

     The plastic behavior of the specimen loaded at 0° (RD) is slightly different in 
intensity with a dozen of MPa. Regarding the figure 4, some differences can be 
observed as compared to thin sheets [1]. Concerning the elastic yield stress 00 
this one has average value about 300 MPa (between 250 MPa and 325 MPa), 
slightly higher than that of the thin sheet (250 MPa). 
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Figure 4: Experimental true stress–true strain curve along the directions 0°, 45° 
and 90° of an AA2024-T351 thin sheet [1]. 

     Starting from the classical plane anisotropy theory (used for studying thin 
sheets) the material anisotropy can be firstly estimated via the Lankford coefficient 
r(θ). The values measured for different angles and at various plastic strain levels 
are listed in table 1. Figure 5 plot the corresponding variations. Because the planar 
anisotropy Δr  has smaller values ( Δr =-0.05 for 5% plastic deformation and Δr
=-0.07 for 10%) it is possible to consider that this aluminum alloy has rather a 
normal anisotropy, which is a particular case of a 3D anisotropy. 
 

Table 1:  The r(θ) values corresponding to different tensile directions (angle θ) 
and corresponding to different plastic strain levels. 

r(θ) 
Cumulated 

plastic strain 
2% 5% 7% 10% 12% 

0° 0.88 0.75 0.61 0.62 0.61 
30° 0.74 0.59 0.56 0.79 0.71 
45° 0.6 0.78 0.7 0.68 0.73 
60° 0.6 0.53 0.57 0.78 0.68 
75° 1.19 0.78 1.03 0.7 0.61 
90° 0.83 0.7 0.67 0.6 0.59 

r  0.73 0.75 0.67 0.64 0.66 

Δr  0.25 -0.05 -0.06 -0.07 -0.13 
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Figure 5: Variation of r(θ) with the equivalent plastic strain. 
 

     Moreover, an average Lankford coefficient r  lower than 1 ( r =0.75 for 5% 
plastic deformation and r =0.64 for 10%) reflects a less good formability of this 
material. Starting from a Hill anisotropic law, the variations of the coefficients 
with the plastic strain (F’, G’, H’, L’, M’, N’ or dimensionless F, G, H, L, M, N 
defined by the relationships of Table 2) seems to be in accordance with the 
classical analysis of the plane and normal anisotropy formulation. The evolution 
of these coefficients with the plastic strain is plotted in figures 6. In a first 
approximation, estimating r coefficients for 0.2% of plastic deformation, the 
dimensionless Hill coefficients F, G, H and N have constant values. In the case of 
normal anisotropy, in order to describe in a more realistic way the variation of the  
 

 

Figure 6: Variations of the computed Hill coefficients as a function of the 
plastic deformation for a plane anisotropy. 
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average Lankford coefficient r , one makes a three degree polynomial 
interpolation (Figure 7). The corresponding curves representing the variation of 
the computed Hill coefficients are plotted in figure 8. 
 

 

Figure 7: Three degree polynomial interpolation of r  according to the 
variation with the plastic strain. 

 

Figure 8: Variations of the computed Hill coefficients as a function of the 
plastic deformation for a normal anisotropy. 

3 Constitutive models  

The use of a finite strain formulation through updated Lagrangian formalism is 
needed to model large-strain deformations. The material behavior description is 
based on constitutive equations using internal tensorial variables [2] and on the 
Green–Naghdi transformation of the stress–strain problem. The strain is 

decomposed into elastic part and inelastic parts i.e. e p      starting from 

e pdε=dε +dε   and eσ=Λ:ε  ,  where eε  is the elastic strain calculated from the 
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generalized Hook law, σ  is the Cauchy stress tensor and Λ  is the fourth-rank 
tensor of elastic moduli. 

3.1 Macroscopic unified model: Hill ’48 yield criterion 

There are many possibilities for extending the isotropic criteria to the description 
of anisotropic materials [3–5]. The method generally used to take into account a 
3D anisotropy is to involve a tensor of fourth order into the criterion expression 
[5–9]. An anisotropic yield loci can be written as a quadratic extension of the von 
Mises formulation as can be seen in Table 2 which summarizes the general 
constitutive equations of a macroscopic unified model and of anisotropic Hill 1948 
criteria. 

Table 2:  Constitutive equations of the unified model [3–9]. 

f(σ)= (s-X):B:(s-X)-R    ; 

1 3s ( / )Trace( )I       

Kinematic hardening (Prager) [3]: 
2 3X = ( / )Cα   

Isotropic hardening (Voce law) [4]: 

0R=R +Q[1-exp( -bλ )]  

Normal plastic flow [5]: 
fpε =λ =λn
σ



  


;  α=λ n-Dα    

Hill 1948 criteria [5, 6]: 

2 2
yy zz zz xx

2 2 2
xx yy yz xz

2
xy

F(σ -σ ) +G(σ -σ ) +

f(σ)= R H(σ -σ ) +2Lσ +2Mσ +

2Nσ

 

0 25 0 45 90r = . (r +2r +r );
2
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
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 B : fourth order tensor 
 s : deviatoric part of the stress 

tensor σ~  

 X : Back stress variable  
 α : hardening variable 
 R: elastic domain 
 R0:  initial size of R 
 Q, b: material parameters 

 λ  : plastic multiplier and  
represents here an equivalent 
plastic strain. 

  (F, G, H, L, M, N) and (F’, G’, 
H’, N’): Hill coefficients 

 r: Lankford coefficient 
 r , r : average and planar 

anisotropy coefficients 
 0 =R: equivalent stress 

Normal anisotropy: 
1

1
F G

( r )
 


;

2
0

1

1
F' G'

( r )
 

 
; 

1

r
H

( r )




2
0 1

r
H'

( r )

 

; 2N F H  ;

2N ' F ' H '   
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3.2 Polycrystalline model 

For this type of model, the plastic deformation can be seen as the result of the 
dislocations slips along the active directions of the crystallographic systems 
defining the material structure (FCC for AA2024). According to a Cailletaud 
model [7] Table 3 summarizes the corresponding used equations. 

Table 3:  Equations of the polycrystalline model [7–9]. 

 g g gσ =Σ+C β -β   

g g g gβ =ε -Dβ ε
     , s g g

sτ =σ :m ;

 1

2
g s s s s
sm n l l n       

n
s s s

s s
s

τ -x -r
γ = sign(τ -x )

k
  

s rs r r r
0r =r' +q H (1- v );v = γ  

12

1

p g
s s

s

ε = m γ

   ; p pE      

 pE : macro plastic strain rate 

 Σ : macro stress   

 gσ : local grain stress 

 sτ : local shear stress  
 g

sm : orientation tensor 

 sγ : shear rate  

 sr : isotropic hardening   

 sx : kinematic hardening 

 r'0: initial value of 
sr  

 : saturation rate 

3.3 Multi-mechanisms model 

The objective of the multi-mechanism models is to use an approach that falls 
between a macroscopic scale describing a global plastic deformation description 
and a microscopic one based on crystallographic mechanisms of deformation.  The 
anisotropic behavior of AA2024 alloy is investigated here using a 2M1C model 
(2 mechanisms and 1 criterion) described in Table 4. 
     The plastic strain pε~  is written as the sum of two components 1ε~ and 2ε~ which 
represent the local inelastic strains of the mechanism 1 and 2 respectively. The 
material anisotropy criterion f (Table 4) will be here represented by two second 

invariants JL, introducing a fourth order tensor L  where only the non-diagonal 
terms are different from zero. Then the anisotropic parameters are denoted by the 
diagonal terms La, Lb, Lc, Ld, Le and Lf of corresponding L matrix.  

4 Numerical approach 

The numerical implementation of the above three elastoplastic models is 
performed via the subroutine ZSeT and the material library ZMaT of the FE code 
ZeBuLoN. In this section, the reliability of the models is evaluated using the 
results of uniaxial tensile tests according to the three principal directions 0° (RD), 
45° (DD) and 90° (TD). For all these simulations are used an isotropic hardening 
Voce law and a Prager's equation if kinematic hardening (see Table 2). It should 
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Table 4:  Multi-mechanisms models (MM-2M1C) [8–10]. 

p 1 2ε =ε +ε    

   - -
2 21 2

L Lf= J (σ X ) + J (σ X ) -R'    

I I I
LI L

3
J =J (σ-X )= (s-X ):L:(s-X )

2
     ; 

I=1, 2and 0R'=R' +Q'[1-exp( -b'λ )]  
11

11 12

22
12 11

2

3

C CX

C CX

     
        

 
 

 

 
 

I

I
1/22 2

LI LI

L: s-X3
n

2 J +J


 
  

 f : yield criterion function 

 pε : plastic strain 

 Iε : local inelastic strains of the 
mechanism I (1, 2) 

 IX : back stress of each   
mechanism I 
 C11,C12, C22 : kinematic 
hardening moduli 

 In : normal to the yield surface 
for each mechanism 

 Iα : kinematic internal variables 

 
be mentioned that for each model the identification of material parameters were 
carried in two stages. In a first time by changing their values via an interactive-
graphic method until the computed FE curves and the experimental ones have 
close variations. At this stage, an optimization module of ZeBuLoN is started to 
improve the solution by an automatic non-linear regression. Figure 9 shows 
simulation results of a tensile test using the unified model with a Voce law 
(without kinematic hardening) defined by the following variation of the equivalent 
stress: 250R=301+ [1-exp(-18λ )] . 

 

 

 

Figure 9: Evolution of plastic deformation obtained by FE simulation of the 
tensile test along the 0° direction. 

     It can be observed the homogeneous strain state of the useful specimen part, 
validating then the experimental estimations of the stress and plastic strain. 

4.1 Macroscopic unified model 

FE simulations of tensile tests are used to identify the anisotropic parameters 
(Table 5).  
     According to G+H=1 only three independent anisotropic parameters F, G and 
N must to be identified. Anisotropic parameters L and M cannot be determined 
considering only uniaxial tensile tests. It is therefore assumed that L=M=N. It is 
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important to mention that identification was realized in the case with a kinematic 
hardening, but outside the Hill parameters values, the material coefficients have 
not a unique solution. In this case it should be introduced other experimental data 
as those obtained from cyclic tests. In figure 10, the stress-strain curves show that 
there is a good agreement between the experiment and simulation. 

Table 5:  Identified parameters of the anisotropic unified model without 
kinematic hardening (with kinematic hardening) (MPa). 

Elasticity Isotropic hardening Kinematic hardening 
E υ R0 00   Q b C D 

80000 
(80000) 

0.33 
(0.33) 

301 
(301) 

250 
(260) 

18 
(15) 

0 
(17000) 

0 
 (2200) 

Plane anisotropy 
F G H L M N 

0.5  
(0.41) 

0.63  
(0.62) 

0.37  
(0.38) 

0.97 
(1.25) 

0.97 
(1.25) 

0.97 
(1.25) 

Normal anisotropy 
F G H L M N 

0.63 
 (0.57) 

0.63 
 (0.57) 

0.36 
 (0.42) 

1.35 
(1.42) 

1.35 
(1.42) 

1.35 
(1.42) 

 

 

Figure 10: Comparisons between experimental and simulated tensile tests for the 
unified model without kinematic hardening. 

4.2 Polycrystalline model 

The use of polycrystalline models to describe the anisotropic mechanical behavior 
of AA2024 aluminum alloy requires taking into account their crystallographic 
texture provided by the spatial distribution of the grains orientations. An initial 
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{111} pole figure approximated by a set of 212 orientations corresponding to the 
initial state of the material and constructed using a numerical stereographic 
projection code (Projstern) is shown in Figure 11. The identified parameters values 
of the polycrystalline model obtained from the best fit between the experimental 
responses and those obtained from FE simulations are given in Table 6. 

Table 6:  Identified parameters of the polycrystalline model (MPa). 

Elasticity Isotropic hardening Norton parameters Kinematic 
hardening 

E υ r’0 q  k n C D 
75000 0.33 301 90 2 80 8 300000 100 

 
     Figure 12 shows that the stress-strain curves obtained by numerical simulations 
are in a good agreement with the experiment. 
 

 

Figure 11: {111} Pole 
fig. computed 
by Projstern 
[9]. 

Figure 12: Comparisons between experimental 
and simulated tensile curves for the 
polycrystalline model. 

4.3 Multi-mechanisms model (MM–2M1C) 

The identified anisotropic material parameters are shown in the table 7 (the 
isotropic parameters Le and Lf are not identified here).  

Table 7:  Identified parameters of the anisotropic 2M1C model (MPa). 

E υ R’0 00 2   Q’ C11 C22 C12 

80000 0.33 360 260 1200 2500 900 
b’ D1 D2 La Lb Lc Ld 
7 5 5 1 1 0.2 0.5 
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     The comparisons between the simulated stress-strain curves and the 
experimental ones are illustrated by figure 13. 

 

Figure 13: Comparisons between experimental and simulated tensile tests for the 
MM (2M1C) model. 

     For this model the computed curves have more precise values as compared to 
those obtained by the previous models. 

5 Application: thick sheet drawing process 

In this section, a numerical simulation of an axisymmetric (2D) drawing process 
is performed using FE models. The simple drawing is performed without a blank 
holder, considering that the sheet is placed on the die and clamped on its edge. The 
punch and the die are modelled as rigid bodies whereas only the thick blank is 
defined as a deformable body using a mesh defined by 4-nodes linear elements 
(CAX4) (figure 14). 

 

Figure 14: The geometry and the mesh used in a finite element drawing process 
simulation (all dimensions are in mm). 

3 

R5 R5
8 

Blank 

Die 

 Ø 32.5

Ø 22.5 

Punch 

Ø 19.5 

3 

x 

y 

R5

174  High Performance and Optimum Design of Structures and Materials II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press



     It is important to mention that this study is focused on the case of a conventional 
drawing of a thick sheet (3 mm) using shallow depth (8 mm). The clearance 
between the punch and the die is 3 mm and the friction of contact between 
punch/blank and blank/die were defined with a Coulomb model via a friction 
coefficient equal to 0.1. All the other used material parameters values are listed in 
table 5 (Unified Model with a plane anisotropy), table 6 (Polycrystalline Model) 
and table 7 (2M1C Model). Figure 15 shows the numerical load-stroke curves for 
the three models obtained from simulation with Zebulon code.  
     For the simulations using an unified model without kinematic hardening both 
Abaqus and Zebulon code were performed using an isotropic hardening Voce law 
defined by 250R=301+ [1-exp(-18λ )] . Figure 16 shows the comparisons of the 
 

 

Figure 15: Numerical load-displacement curves obtained for RD, TD and DD 
drawing tests and the three models: Unified, MM (2M1C) and 
Polycrystalline (Zebulon). 

 

 

Figure 16: Numerical load-displacement curves obtained for RD, TD and DD 
drawing tests using the unified model without kinematic hardening 
(Abaqus and Zebulon). 
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numerical load-displacement curves. Nearly similar shape and maximum loads are 
obtained for unified and MM (2M1C) models as compared to the polycrystalline 
one which seems to overestimate the drawing forces.  
     Contour plots of the equivalent stress at the end stage of the loading are shown 
in figure 17 for the three directions RD, DD and TD. It can be observed that the 
unified and the MM (2M1C) models lead to similar distribution of the stress. On 
the other side, the polycrystalline model gives different results principally due to 
the important influence of the local material texture evolution. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 17: Contour plot of the equivalent stress at 8 mm depth: (a) unified model; 
(b) MM (2M1C) model; (c) polycrystalline model. 

6 Conclusion 

This paper presents an analysis of 2024-T351 aluminum alloy anisotropy using 
experimental tensile tests and three multi-scales approaches: Unified, Multi-
Mechanisms and Polycrystalline. A good agreement is obtained between the 
experiments and the three proposed numerical models in terms of stress-strain 
behavior. It is shown that for the anisotropy simulation, the MM model and the 
polycrystalline one give more accurate results compared to the unified model.  The 
major advantage of this type of models is the use of a reduced parameter’s number. 
Starting from the above approaches and using model’s identification techniques, 
numerical simulations of a simple drawing process has been analyzed. The load-
displacement curves and the distribution of the equivalent stress show the 
feasibility of all proposed models. The next step of this work is to study a complete 
3D anisotropy corresponding to large plastic deformations, starting from channel 
die compressions, a biaxial tensile test and simple shear ones.  

(c) 45° (DD) 

(b) 
90° (TD) 

0° (RD) 90° (TD) 

(a) 
90° (TD) 0° (RD) 45° (DD) 

0° (RD) 45° (DD) 

176  High Performance and Optimum Design of Structures and Materials II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press



References 

[1] Seidt, J.D., Plastic Deformation and Ductile Fracture of 2024-T351 
Aluminum under Various Loading Conditions, Ph.D. Thesis, Graduate 
School of the Ohio State University, 2010. 

[2] Ladevèze, P., Nonlinear Computational Structural Mechanics-New 
Approaches and Non-Incremental Methods of Calculation, Springer, 1999. 

[3] Prager, W., The theory of plasticity - a survey of recent achievements. Proc. 
Inst. of Mech. Eng., London, England, 169, pp. 41-57, 1955. 

[4] Voce, E., A practical strain hardening function, Metallurgia, 51 (307), 
pp. 219-226, 1955. 

[5] Hill, E., A theory of the yielding and plastic flow of anisotropic metals, 
Proc. Roy. Soc., London, 1948. 

[6] Zhang, S., Francillette, H., Gavrus, A., Analysis of the anisotropic behavior 
and the formability aptitude for an AA2024 alloy using channel die 
compression test and the simple tension test, Key Eng. Mat., 504-506, 
pp. 23-28, 2012. 

[7] Cailletaud, G., Saï, K., A polycrystalline model for the description of 
ratchetting: Effect of intergranular and intragranular hardening, Mat. Sci. 
Eng., 480, pp. 24-39, 2008. 

[8] Saï, K., Multi-mechanism models: Present state and future trends, Int. J. 
Plast, 27, pp. 250-281, 2011. 

[9] Nasri, W., Gavrus, A., Kouadri, A., Saï, K., Applications of multi-scale 
models to numerical simulation and experimental analysis of anisotropic 
elastoplastic behavior of metallic sheets, Key Eng. Mat., 611-612, pp. 536-
544, 2014.  

[10] Saï, K., Aubourg, V., Cailletaud, G., Strudel, J., Mater. Sci. Technol., 20, 
pp. 747-755, 2004. 

 

High Performance and Optimum Design of Structures and Materials II  177

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press




