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Abstract

Predicting the effective thermo-mechanical response of heterogeneous materials
such as composites, using virtual testing techniques, requires imposing periodic
boundary conditions on geometric domains. However, classic methods of imposing
periodic boundary conditions require identical finite element mesh constructions on
corresponding regions of geometric domains. This type of mesh construction is infeasible
for heterogeneous materials with complex architecture such as textile composites where
arbitrary mesh constructions are commonplace. This paper discusses interpolation
techniques for imposing periodic boundary conditions on general finite element mesh
constructions for predicting the effective elastic properties of a variety of heterogeneous
materials. Benchmark virtual tests on identical and non-identical meshes demonstrate
the high fidelity of the proposed periodic boundary conditions enforcement technique,
in comparison to a conventional technique of imposing periodic boundary conditions
and experimental data.
Keywords: effective properties, periodic boundary condition, textile composite, meso-
scale modelling, finite element, heterogeneous materials, virtual testing.

1 Introduction

Virtual tests can reduce the cost of experimental testing in the aerospace industry by
50 % [1]. Furthermore, the predictive fidelity of virtual testing is determined chiefly
by the accuracy of the geometric domain, material models and imposed boundary con-
dition(s) (BC) [1]. For heterogeneous materials such as textile composites, periodic
BC is the most efficient for virtual testing, with respect to accuracy, convergence rate
and geometric domain size, in comparison to other common BCs such as Dirchlet and
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Neumann BCs [1, 2]. However, imposing periodic BC on textile geometric domains is
arduous because the classic implementation method requires homologous finite element
(FE) meshes at the boundaries of a geometric domain. This homologous mesh require-
ment is difficult to satisfy for textile composites because of their complex geometric
structure which yield inevitable non-homologous boundary mesh constructions [3].
Thus, it is desirable to develop techniques for imposing periodic BC on arbitrary mesh
constructions amenable to textile composites.

Most recently, Jacques et al. [3] proposed a technique for imposing periodic BC
to arbitrary textile meshes. Jacques and co-workers introduced several reference nodes
in a Euclidean grid structure which were kinematically coupled to existing nodes on
corresponding surfaces on the textile RVE. However, the use of Laplacian spatial aver-
aging to determine the location of these reference nodes violates the strict enforcement
of spatial ‘homologousness’ between boundary surface pairs, which is a pre-requisite
for PCBs. Thus, numerical artefacts can ensue from this anomaly which may become
apparent in finite deformation regimes. Tyrus et al. [4] imposed periodic BC to arbitrary
unidirectional (UD) composite meshes in 2D using polynomial interpolation techniques.
The displacement fields of fibres and matrix were interpolated using linear and cubic
interpolants, respectively. Recently, Nguyen et al. [2] generalised the technique of Tyrus
et al. [4] and extended the formalisms to 3D cases of UD and particulate composites.
The authors used Lagrange and piecewise cubic Hermite polynomial interpolants to
determine the displacement fields along independent boundary edges. Displacement
fields on RVE surfaces were interpolated using a bi-linear Coons patch formulation.

In this communication, we describe and implement a dual-scale (micro and meso
scale) homogenisation model for predicting the entire effective elastic properties of
textile composites, using periodic BCs amenable to arbitrary textile meshes. We extend
a robust variant of the periodic BC enforcement method proposed by Nguyen et al. [2].
Section 2 of this communication recalls the essentials of downscaling and periodic
BC. Section 2.1 describes the proposed periodic BC technique amenable to arbitrary
meshes. In Section 3, the proposed periodic BC method is validated. Lastly, Section 4
describes the adopted virtual testing technique used to determine the entire effective
elastic properties of textile composites.

2 Periodic boundary condition (PBC)

To ensure energetic consistency between the macro-scale, Ωmacro, and a sub-scale prob-
lem, ΩRVE, boundary conditions on the boundary of the sub-scale, ∂ΩRVE, must be
specified as ∮

∂ΩRVE

(ti−σijnj)uidS=0, (1)

where t is the external traction on ∂ΩRVE, σ is the volume-averaged stress in ΩRVE, n
is the outward normal to ∂ΩRVE, and u is the imposed displacement field on ∂ΩRVE.

Many BC’s can be imposed on ∂ΩRVE to satisfy Eqn (1): however, periodic BC
is the preferred BC of choice for heterogeneous materials. In order to impose PBC on
ΩRVE in RN , where N is the dimensionality of the RVE’s solution space, ∂ΩRVE is
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decomposed into two distinct parts: a positive part, ∂Ω+
RVE, and a negative part, ∂Ω−

RVE.
Each corresponding pair of positive and negative boundary faces have material pointsx+

and x−, respectively, such that, x+∈∂Ω+
RVE and x−∈∂Ω−

RVE. x− and x+ have unit
outward normals,n+ =−n−, respectively. Thus, the following relationships are satisfied

∂Ω+
RVE∪∂Ω−

RVE =∂ΩRVE, and (2)

(∀x+∈∂Ω+
RVE and x−∈∂Ω−

RVE) ∂Ω+
RVE∩∂Ω−

RVE =∅. (3)

In practice two different types of FE mesh constructions exist: (1) a homologous
mesh construction, and (2) a non-homologous mesh construction. Homologous meshes
satisfy specific conditions such that

#∂Ω+
RVE =#∂Ω−

RVE and (4a)

(∀x+∈∂Ω+
RVE and x−∈∂Ω−

RVE) n+×n−=0, (4b)

where # represents the cardinality of a set. Imposing PBC on homologous meshes is
achieved by using classic methods that kinematically tie homologous boundary node
pairs [1]. This kinematic tying is achieved using multi-point constraint equations. Con-
versely, non-homologous FE meshes satisfy specific conditions such that

#∂Ω+
RVE

?
=#∂Ω−

RVE, and (5a)

(∃x+∈∂Ω+
RVE and x−∈∂Ω−

RVE) n+×n− 6=0. (5b)

The conditions described by Eqn (5) are illustrated in Fig. 1. In these cases, the classic
kinematic tying of node pairs is unsuitable; therefore, more robust methods, proposed
herein, must be utilised.

2.1 Imposing PBC on arbitrary FE meshes

In adopting the proposed PBC interpolation technique, we postulate that the displace-
ment field of an RVE’s boundary, ∂ΩRVE, can be interpolated. Interpolation functions,
D(s), are adopted such that Eqn (1) is satisfied. To this end, the following conditions
are evoked to interpolate the displacement fields of the negative and positive parts of
∂ΩRVE, respectively

u(s)−=D(s)=
n∑

k=1

Nk(s)ak, and (6)

u(s)+ =D(s)+εεε(x+−x−), (7)

where Nk(s) for k∈{k=1,2,···,n} are shape functions which solely depend on spatial
variable(s), s, ak represents independent variables, εεε is the strain tensor imposed at
the continuum scale, and (x+−x−) depends of the RVE’s dimensions. Therefore the
displacement field of ∂ΩRVE, is determined from the independent variables ak and the
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(a) (b)

Figure 1: Typical examples of non-homologous FE meshes in 2D (a) Eqn (5a), and
(b) Eqn (5b). The red and light blue circles ( , ) represents nodes on the -ve
and +ve RVE boundaries, ∂Ω−

RVE and ∂Ω+
RVE, respectively. The black circles

( ) represents vertex nodes which are shared by +ve and -ve RVE boundaries.

applied far-field continuum scale strain εεε. The independent variables are selected as
DOFs of specific nodes located at ∂Ω−

RVE.
In R3, ΩRVE may be decomposed into edges and surfaces. Therefore, two different

kinds of polynomial interpolants are necessary to interpolate the entire boundary of the
RVE in R3: an edge interpolant and a surface interpolant. A piecewise cubic Hermite
spline and linear triangulation interpolation were adopted in this work for edge and
surface interpolants because of their versatility. These interpolants are discussed in
Section 2.1.1 and Section 2.1.2, respectively.

2.1.1 Piecewise cubic Hermite interpolation for RVE edges
To implement a piecewise cubic Hermite interpolant for an RVE’s Edge, the edge
is decomposed into n segments Si−1 for i ∈ {1,2,··· ,n} defined from n+1 triples
{(ξ0,u0,θθθ0),···,(ξn,un,θθθn)}. Subsequently, the displacement field in each segment is
interpolated using a third order Hermite polynomial:

H1(ζ)=1−3ζ2+2ζ3, (8a)

H2(ζ)=l(ζ−2ζ2+ζ3), (8b)

H3(ζ)=3ζ2−2ζ3, (8c)

H4(ζ)=l(−ζ2+ζ3), (8d)

where ζ(ξ)= ξ−ξi−1

l , l= ξi−ξi−1 and ξi−1 6 ξ6 ξi. Thus, the displacement field in
each segment is represented as

u(ξ)=H1(ζ(ξ))ui−1+H2(ζ(ξ))θθθi−1+H3(ζ(ξ))ui+H4(ζ(ξ))θθθi, (9)
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which can be written concisely in matrix form

u(ξ)=Ñq̃, (10)

where Ñ is the local shape function matrix for the interpolant, and q̃ =[
uTi−1 θθθ

T
i−1 u

T
i θθθ

T
i

]
is the local vector of independent variables within each segment.

Fig. 2 shows a schematic representation of implementing the this univariate interpolation
technique for enforcing periodic BC to RVE edges.
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Figure 2: Schematic showing the implementation of PBC interpolation technique for
RVE edges using univariate polynomial interpolation functions where u
represents a displacement field, ε represents the macroscopic strain tensor
and xNi represents a material point of nodeNi for i∈{A,B,C,D}.

2.1.2 Piecewise linear triangulation interpolation for RVE surfaces
To implement a piecewise linear triangulation interpolant for an RVE’s surface, the
surface is decomposed into a collection of n triangles Ti for i ∈ {1,2,··· ,n} which
define a triangulation P . The number of triangles, n, in the triangulation, P , is defined
as n=2k−b−2, where k is the number of points in P and b is the number of points
in P that lie on the boundary of the convex hull of P . Many different triangulation
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techniques may be used to decompose the RVE’s surface. This work adopts a Delau-
nay triangulation because it produces optimally shaped triangles which are necessary
for good interpolation. Subsequently, the displacement field within each triangle, with
vertices v1,v2 and v3, is interpolated using a linear barycentric polynomial:

B1(ξ,η)=
area(v(ξ,η),v2(ξ,η),v3(ξ,η))

area(v1(ξ,η),v2(ξ,η),v3(ξ,η))
, (11a)

B2(ξ,η)=
area(v(ξ,η),v1(ξ,η),v3(ξ,η))

area(v1(ξ,η),v2(ξ,η),v3(ξ,η))
, (11b)

B3(ξ,η)=
area(v(ξ,η),v1(ξ,η),v2(ξ,η))

area(v1(ξ,η),v2(ξ,η),v3(ξ,η))
, (11c)

whereB1+B2+B3 =1. Thus, the displacement field within each triangle is represented
as

u(ξ,η)=B1(ξ,η)uv1 +B2(ξ,η)uv2 +B3(ξ,η)uv3 , (12)

which can be written concisely in matrix form

u(ξ,η)=Ñq̃, (13)

where Ñ is the local shape function matrix for the interpolant, and q̃=[uv1 uv2 uv3] is
the local vector of independent variables within each triangle. Fig. 3 shows a schematic
representation of enforcing periodic BC on RVE surfaces using piecewise linear trian-
gulation interpolation functions.

3 Validation of PBC enforcement for arbitrary FE meshes

In validating the proposed method for periodic BC enforcement using polynomial interpo-
lation, predictions using this method were compared to those obtained from PBC enforce-
ment by kinematic tying [1] and experimental data. A unidirectional (UD) carbon fibre-
reinforced epoxy composite (T300/BSL914C) characterised in the world-wide failure
exercise [5] was adopted due to the flexibility in controlling its FE mesh. The properties
of the constituents comprising the T300/BSL914C composite are reported in Table 1. For
the purpose of comparison with periodic BC enforcement by kinematic tying, a homolo-
gous RVE mesh was considered. However, for the case of a non-homologous mesh, only
the proposed periodic BC enforcement using polynomial interpolation was amenable.

3.1 Results and discussion of validation exercise

Experimental data alongside predictions from the various PBC enforcement techniques
are reported in Table 2. Furthermore, example computational FE contour plots from
the different types of periodic BC enforcement techniques are depicted in Figs 4–5.
For the homologous mesh, predictions from the periodic BC enforcement by kine-
matic tying and the proposed polynomial interpolation technique coalesce qualitatively
and quantitatively. Coalescence is expected in this special case because for a homol-
ogous mesh where the entire nodes on the independent boundary regions are used as
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Figure 3: Schematic showing the implementation of PBC interpolation technique
for RVE surfaces using piecewise linear triangulation interpolation functions.
Note that u represents a displacement field, ε represents the macroscopic
strain tensor, xNi represents a material point of node Ni for i∈{A,B,···,H}
and u

N
Tk
j

represents the displacement field of node Nj in triangle Tk for

i∈{1,2,3} and k∈{1,2,···,17}.

Table 1: Mechanical properties of the constituents of a carbon fibre-reinforced
epoxy composite (T300/BSL914C) with Vf =60% [5].

Elastic constant Fibre (T300) Matrix (BSL914C)

Longitudinal modulus (GPa), E11 230 4

Transverse modulus (GPa), E22 3.45 4

In-plane shear modulus (GPa), G12 15 1.481

Transverse shear modulus (GPa), G23 7 1.481

Major Poisson’s ratio, ν12 0.2 0.35

contour plots from the different types of periodic BC enforcement techniques are
depicted in Figs 4–5. For the homologous mesh, predictions from the periodic
BC enforcement by kinematic tying and the proposed polynomial interpolation
technique coalesce qualitatively and quantitatively. Coalescence is expected in
this special case because for a homologous mesh where the entire nodes on the
independent boundary regions are used as the independent degrees of freedom in
the interpolation functions, the interpolation method reduces to a kinematically
tied case. Therefore, the kinematic tying periodic BC enforcement technique is a

Figure 3: Schematic showing the implementation of PBC interpolation technique for
RVE surfaces using piecewise linear triangulation interpolation functions.
Note that u represents a displacement field, ε represents the macroscopic
strain tensor, xNi represents a material point of nodeNi for i∈{A,B,···,H}
and u

N
Tk
j

represents the displacement field of node Nj in triangle Tk for

i∈{1,2,3} and k∈{1,2,···,17}.

Table 1: Mechanical properties of the constituents of a carbon fibre-reinforced epoxy
composite (T300/BSL914C) with Vf =60% [5].

Elastic constant Fibre (T300) Matrix (BSL914C)

Longitudinal modulus (GPa),E11 230 4
Transverse modulus (GPa),E22 3.45 4
In-plane shear modulus (GPa),G12 15 1.481
Transverse shear modulus (GPa),G23 7 1.481
Major Poisson’s ratio, ν12 0.2 0.35

the independent degrees of freedom in the interpolation functions, the interpolation
method reduces to a kinematically tied case. Therefore, the kinematic tying periodic BC
enforcement technique is a degenerate form of the proposed polynomial interpolation
periodic BC technique for homologous meshes, provided all the entire independent
nodal regions of the RVE is used in the interpolation functions. Nevertheless, predictions
based on the non-homologous and homologous RVEs equally coalesce qualitatively and
quantitatively. Although negligible differences are present within the FE contour plots,
these differences stem from inevitable discretisation errors inherent within the RVEs
due to mesh differences. Similarities between predictions from the homologous and
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non-homologous mesh is observed because the proposed PBC enforcement technique by
polynomial implementation faithfully reproduces the appropriate boundary constraints
on the RVE. More important, all the predicted effective elastic constants agree excellently
with experimental data because appropriate boundary conditions have been enforced.
Therefore, this virtual testing technique is well-suited for use in determining a holistic
range of effective elastic constants of continuous fibre reinforced composites.

Table 2: Comparison of predicted effective elastic constants of T300/BSL914C
(Vf = 60%) using different implementations of PBC and experimental
data [5].

Homologous mesh Non-homologous mesh

Elastic
constant

Experiment

PBC
enforce-
ment by

kinematic
tying

PBC
enforcement by

polynomial
interpolation

PBC
enforcement

by
polynomial
interpolation

E11 (GPa) 138 133 133 133
E22 (GPa) 11 10 10 10
E33 (GPa) 11∗ 10 10 10
ν12 0.28 0.23 0.23 0.23
ν13 0.28∗ 0.23 0.23 0.23
ν23 0.4 0.37 0.37 0.37
G12 (GPa) 5.5 4.2 4.2 4.2
G13 (GPa) 5.5∗ 4.2 4.2 4.2
G23 (GPa) 3.9∗∗ 3.3 3.3 3.3

∗ Transverse isotropy in the 2-3 plane is assumed.
∗∗ Computed based on transverse isotropy in the 2-3 plane byG23 = E22

2(1+ν23) .

4 Predicting the effective elastic properties of textile
composites with arbitrary FE mesh

Having validated the proposed PBC enforcement technique for arbitrary FE meshes,
using a UD composite as a test case, the next step is to use this validated technique to
predict the effective elastic properties of textile composites. The selected test material
for the analysis is a through-thickness angle-interlock epoxy composite (TTT-AIC) with
low crimp [6]. The idealised geometry of the TTT-AIC is depicted in Fig. 6. The entire
yarns within the composite comprise carbon fibre rovings: the warp and weft yarns
comprise Tenax HTS whilst the binder yarns comprise Tenax HTA. The composite was
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Figure 4: Comparison of FE contour plots illustrating longitudinal tensile deformation
(i.e. ε33) of T300/BSL914C (a) homologous mesh with PBC enforcement by
kinematic tying, (b) homologous mesh with PBC enforcement by polynomial
interpolation, and (c) non-homologous mesh with PBC enforcement by
polynomial interpolation.

consolidated used an RTM-6 epoxy resin. The material properties of the constituents
comprising this textile are reported in Table 3.

An in-house textile composite generating algorithm, TextCompGen, was developed
and implemented in ABAQUS/CAE to generate textile RVEs.

In analysing the textile composite the yarns were decomposed into their primary
constituents: matrix and fibre. Thereafter, yarns were modelled at the micro-scale as,
densely packed, orthotropic UD composites (i.e. an identical analysis technique was used
in Section 3). Subsequently, the homogenised effective elastic constants extracted from
the micro-scale analysis were used as inputs for the meso-scale continuum model for
each yarn. The arbitrary undulation of each yarn was considered by assigning discrete
material orientations to each yarn within the fabric. Furthermore, the discrete matrix
pockets at the meso-scale are modelled using an identical Hookean elastic model used
in the micro-scale analysis.
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Figure 5: Comparison of FE contour plots illustrating in-plane shear deformation (i.e.
ε12) of T300/BSL914C (a) homologous mesh with PBC enforcement by
kinematic tying, (b) homologous mesh with PBC enforcement by polynomial
interpolation, and (c) non-homologous mesh with PBC enforcement by
polynomial interpolation.

Table 3: Mechanical properties of the constituents of the through-the-thickness
angle-interlock textile composite [6].

Elastic constant Tenax HTA Tenax HTS Epoxy

Longitudinal modulus (GPa),E11 240 240 2.84
Transverse modulus (GPa),E22 14 14 2.84
In-plane shear modulus (GPa),G12 20 20 1.029
Transverse shear modulus (GPa),G23 10 10 1.029
Major Poisson’s ratio, ν12 0.3 0.3 0.38
Minor Poisson’s ratio, ν23 0.39 0.39 0.38

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press

138  High Performance and Optimum Design of Structures and Materials II



X

Y

(a)

Y

X

Z

(b)

Z

Y

Hwarp =
0.41mm

Wwarp =3.5mm 1.7mm

(c)

Z

X

H =
3.01mmHweft =

0.274mm

Wweft

2 =1.325mm
0.615mm

(d)

Figure 6: Idealised geometric model of the TTT-AIC fabric: (a) XY plane view,
(b) Isometric view, and (c) YZ plane view, and (d) XZ plane view.

In analysing the textile composite the yarns were decomposed into their
primary constituents: matrix and fibre. Thereafter, yarns were modelled at the
micro-scale as, densely packed, orthotropic UD composites (i.e. an identical analy-
sis technique was used in Section 3). Subsequently, the homogenised effective elas-
tic constants extracted from the micro-scale analysis were used as inputs for the
meso-scale continuum model for each yarn. The arbitrary undulation of each yarn
was considered by assigning discrete material orientations to each yarn within the
fabric. Furthermore, the discrete matrix pockets at the meso-scale are modelled
using an identical Hookean elastic model used in the micro-scale analysis.

4.1 Results and Discussion

The experimental data alongside predictions from the proposed PBC enforcement
technique by polynomial interpolation are reported in Table 4. Additionally,
example contour plots of the full-field stress from FE tests are reported in Fig 7.

The predicted Youngs modulus along the in-plane material directions (i.e.
Exx and Eyy) from the virtual test corroborates experimental results. However,
the virtual test marginally over-predicts the stiffness in both cases with a predic-

Figure 6: Idealised geometric model of the TTT-AIC fabric: (a) XY plane view, (b)
Isometric view, and (c) YZ plane view, and (d) XZ plane view.

4.1 Results and discussion

The experimental data alongside predictions from the proposed PBC enforcement tech-
nique by polynomial interpolation are reported in Table 4. Additionally, example contour
plots of the full-field stress from FE tests are reported in Fig. 7.

The predicted Young’s modulus along the in-plane material directions (i.e.Exx and
Eyy) from the virtual test corroborates experimental results. However, the virtual test
marginally over-predicts the stiffness in both cases with a predictive discrepancy of about
2 %. This over-prediction may be borne from the regularity of the virtual model in com-
parison to the geometric variations inherent in the real material. Nevertheless, the current
predictive fidelity is superior to those reported in previous work on textile reinforced
composites where discrepancies between 10 % to 40 % were reported [7]. A plausible
reason for the current high fidelity of the predicted effective material properties, espe-
cially in the in-plane material direction, stems from the properly enforced periodic BC on
the textile domain as well as the dual-scale homogenisation strategy adopted in this work.

In comparison to experiments, the current virtual test over-predicts the through-
the-thickness Young’s modulus (i.e. Ezz), by about 36 %. This discrepancy is in line
with predictions from previous work on similar through-the-thickness reinforced fab-
ric [7]. It is noted, however, that the experimental value for Ezz was inferred from a
through-thickness compression test which introduces inherent experimental uncertainties
of 15 % [7]. Furthermore, the overestimation ofEzz by the virtual test most likely stems
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Table 4: Comparison of predicted elastic constants of the TTT-AIC textile
using the proposed PBC enforcement technique and experimental data [6].

Elastic constants Experiment Virtual test

Exx (GPa) 64 65.4

Eyy (GPa) 62 62.6

Ezz (GPa) 7 9.5

νxy - 0.045

νxz - 0.370

νyz - 0.380

Gxy (GPa) 11 2.98

Gyz (GPa) - 3.17

+2.213e+11
+2.018e+11
+1.824e+11
+1.629e+11
+1.435e+11
+1.240e+11
+1.045e+11
+8.507e+10
+6.561e+10
+4.615e+10
+.669e+10
+7.230e+09
-1.223e+10
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Figure 7: FE contour plots illustrating tensile deformation of the TTT-AIC
along the weft direction (i.e. εyy) (a) YZ view, and (b) Isometric View.

5 Conclusions

A virtual testing framework for characterising the mechanical response of typical
heterogeneous materials with a robust technique for enforcing periodic bound-
ary condition has been presented. Periodic boundary condition is enforced by
interpolating the displacement field on the RVE’s boundary utilising two piece-
wise interpolation techniques: (1) cubic Hermite interpolation and, (2) linear
triangulation interpolation. A principal advantage of this periodic boundary con-
dition enforcement technique is its applicability to an arbitrary FE mesh design:
homologous or non-homologous. Therefore, it allows a flexible FE mesh design,
especially for heterogeneous materials with complex geometric architectures such
as textile composite, where homologous mesh designs are infeasible.

For homologous mesh designs, validation tests showed that the current
periodic BC enforcement technique and the classic kinematic tying technique
produced identical stress-strain fields and homogenised responses within the RVE.

Figure 7: FE contour plots illustrating tensile deformation of the TTT-AIC along the
weft direction (i.e. εyy) (a) YZ view, and (b) Isometric view.

from the combined assumption that the binder yarn follows a zig-zag path, and the
surface weft yarns have maximum crimp. In practice, the binder yarn follows more
curved trajectory and therefore possesses a gradual undulation in the thickness direction
of the fabric. As a result, the reinforcing effect of the binder yarn is not as pronounced
as the current geometric model suggests. With respect to the surface weft yarns of the
fabric, the maximum crimp enforced within the geometric model allows regions of the
textile to experience the full longitudinal load-baring capacity of the weft yarns. Thus,
this manifests as an exaggerated stiffness in the through-the-thickness direction of the
virtual model In reality, the surface weft yarn experience moderate crimp; therefore,
only a fraction of the longitudinal load-bearing capacity of the weft yarns is experienced
in the thickness direction of the textile.

There is a 73 % discrepancy between the predicted in-plane shear modulus (i.e.
Gxy) and the reported experimental data. The principal source of this discrepancy is
most likely from the experimental data reported by the originating authors [6]. The
authors performed a 45◦ off-axis tensile test on the TTT-AIC specimen; however, the
mandatory data reduction steps necessary for this test method was not reported in their
work, casting doubt on its veracity. Previous work on experimental determination of
in-plane shear modulus [8] of a similar TTT-AIC fabric reported average values of about
4 GPa. Furthermore, previous work on experimental and virtual characterisation of
woven textile composites reported that the shear moduli of these composites are similar
to those of its constituent yarns. Hence, results from the current work is qualitatively,
and to a large degree, quantitatively consistent with these previous findings on the
in-plane shear modulus, (i.e.Gxy), of the composite. The predicted magnitudes of the
through-thickness shear moduli (i.e. Gxz and Gyz) are equally similar to that of the
in-plane shear modulus (i.e.Gxy) of the composite.

More important, the originating authors [6] did not report experimental data for the
Poisson’s ratio of the composite. However, the current virtual test predicted the entire
Poisson’s ratios and the reported magnitudes are qualitatively similar to those reported
for a comparable woven textile composites [9].
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Table 4: Comparison of predicted elastic constants of the TTT-AIC textile using the
proposed PBC enforcement technique and experimental data [6].

Elastic constants Experiment Virtual test

Exx (GPa) 64 65.4
Eyy (GPa) 62 62.6
Ezz (GPa) 7 9.5
νxy - 0.045
νxz - 0.370
νyz - 0.380
Gxy (GPa) 11 2.98
Gxz (GPa) - 3.01
Gyz (GPa) - 3.17

5 Conclusions
A virtual testing framework for characterising the mechanical response of typical het-
erogeneous materials with a robust technique for enforcing periodic boundary condition
has been presented. Periodic boundary condition is enforced by interpolating the dis-
placement field on the RVE’s boundary utilising two piecewise interpolation techniques:
(1) cubic Hermite interpolation and, (2) linear triangulation interpolation. A principal
advantage of this periodic boundary condition enforcement technique is its applicability
to an arbitrary FE mesh design: homologous or non-homologous. Therefore, it allows a
flexible FE mesh design, especially for heterogeneous materials with complex geometric
architectures such as textile composite, where homologous mesh designs are infeasible.

For homologous mesh designs, validation tests showed that the current periodic
BC enforcement technique and the classic kinematic tying technique produced identical
stress-strain fields and homogenised responses within the RVE. This demonstrated that
in this special mesh design case, the kinematic tying method is a degenerate form of
the periodic BC enforcement by interpolation. Whereas for the non-homologous mesh
design, only the periodic BC enforcement by interpolation was applicable. For this
non-homologous mesh case, results showed that the interpolation technique produced
similar stress-strain fields and homogenised responses within the RVE in comparison
to the homologous mesh case, barring negligible FE discretisation errors. Consequently,
the interpolation technique is a superior technique for enforcing periodic boundary
conditions because of its additional applicability to non-homologous meshes.

References

[1] Okereke, M.I. & Akpoyomare, A.I., A virtual framework for prediction of full-field
elastic response of unidirectional composites. Computational Materials Science,
70(null), pp. 82–99, 2013.

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press

High Performance and Optimum Design of Structures and Materials II  141
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