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Abstract 
 
The paper briefly describes a three-dimensional (3D) numerical model for 
describing non-linear behaviour of prestressed concrete structures. A 
computational analysis of reinforced and prestressed concrete structures requires 
a realistic material model and an accurate description of the geometry of 
reinforcement, prestressed tendons and concrete in order to predict their behaviour 
and evaluate the safety levels of the design. The definition of this kind of model 
requires a good mathematical formulation and numerical interpretation, which is 
shown in this paper. The non-linear behaviour of concrete is described by an 
elasto-plastic material model based on the modified Mohr-Coulomb law for 
dominant compression stresses and the modified Rankine law for dominant tensile 
stresses. A multi-surface presentation of the model is implemented, thus 
permitting a rapid convergence of the mathematical procedure. The model 
accounts for the triaxial, non-linear behaviour of concrete and includes all 
dominant effects on concrete such as yielding in compression, cracking in tension, 
softening and hardening. The model is defined by elementary material parameters 
(Young’s modulus, Poisson’s coefficient, maximal uniaxial tensile and 
compression stresses, coefficient of tensile correction, maximal tensile 
and maximal compression strains). The non-linear behaviour of prestressed 
tendons is described by a one-dimensional (1D) elasto-viscoplastic model. The 
tendon element geometry is described by a second order space function which is 
determined by its projections. These elements allow the modelling of arbitrarily 
curved prestressing tendons in space, thus they can be determined independently 
of a 3D finite element concrete mesh. This is particularly important for the space 
curvature of prestressed tendons. Some possibilities of the model are illustrated by 
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a practical example and the obtained results are compared with the known 
numerical and experimental ones. 
Keywords: numerical modelling, prestressed concrete structures, prestressed 
tendon, non-linear behaviour, reinforcement. 

1  Introduction 

Performing the analyses of prestressed concrete structures (Fig. 1), the following 
phenomena have been noticed: non-linear and non-elastic behaviour, damage 
causing degradation of linear-elastic matrix constants, non-linear behaviour after 
peak stress, multiaxial and non-linear distribution of strain causing the 
development of cracks, hardening of non-cracked concrete between two cracks, 
interface of concrete and reinforcement bars, distinctly triaxial stresses around the 
anchors. Due to this highly complex behaviour, prestressed beams are exposed to 
various expensive experimental tests before being embedded in a structure. An 
appropriate numerical model for describing distinctly non-linear triaxial behaviour 
of concrete and an accurate description of geometry allow the analysis of these 
structures via numerical tests. 
 

     

Figure 1: Examples of prestressed concrete structures. 

2  Numerical model 

2.1 General 

For all of the mentioned effects to be accounted for, a numerical model for the 
description of prestressed concrete structures ought to be a three-dimensional (3D) 
non-linear material model with composite finite elements capable of achieving 
highly accurate geometry descriptions. In the first part of this chapter, the main 
functions for defining material behaviour will be briefly addressed, and in the second 
part the description of the geometry of these structures will be presented. 

2.2 A material model for a 3D analysis of concrete 

The non-linear behaviour of concrete is described by an elasto-plastic material 
model based on the modified Mohr-Coulomb law for dominant compression 
stresses and the modified Rankine law for dominant tensile stresses [1]. A multi-

116  High Performance and Optimum Design of Structures and Materials II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press



surface presentation of the model (Fig. 2) is implemented in the model, enabling 
thus a rapid convergence of the mathematical procedure. The non-linear, triaxial 
behaviour of concrete is included in this model, with all dominant influences in 
concrete such as yielding in compression, cracking in tension, softening and 
hardening of concrete.  

 
Figure 2: Multi-surface presentation of concrete model. 

     For the description of all of these parameters, it is necessary to define: 
(a) a fracture model for concrete with the tensile softening of cracked concrete and 

stress–strain relation of cracked concrete; 
(b) a plasticity model for concrete with softening and hardening with respect to 

the total plastic strain. 

2.2.1 Fracture model for concrete 
Previous research have shown that one of the most reliable material laws for 
describing the behaviour of concrete under dominant tensile stresses is the 
Rankine material law. This law has been chosen for application given that it has a 
simple mathematical interpretation and its predictions have proven to agree well 
with experimental results. 
     According to the Rankine material law, concrete softens in tension when at 
least one principal tensile stress reaches the tensile strength of concrete. In the 
domains where the compressive stress (c) appears, the experiments have 
determined that the tensile strength depends also on the magnitude of those 
compressive stresses [2]. Consequently, it is necessary to reduce the tensile 
strength which depends on the number of compressive stresses in the considered 
domain. In Figure 3, red is the reduced tensile strength, i (i = 1, 2, 3) are the 
principal tensile stresses in the considered directions, and c  is the compressive 

strength of concrete. After the appearance of the first crack, it is assumed that its 
direction will stay fixed for the following load increments and that the following 
cracks will appear perpendicularly to the first one. 
     Three significant moments are monitored: 
 the appearance of the first crack that reduces the appropriate coefficients of the 

material constant matrix; 
 the appearance of the second crack at the same integration point (perpendicularly 

to the first crack), which again reduces the appropriate coefficients; 
 the appearance of the third crack at the same integration point perpendicularly 

to the first two cracks. 
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Figure 3: Final reduction of normal tensile stresses and plane of cracking in all 
combinations for compressive and tensile behaviour (left) and tension 
stiffening model for cracked concrete (right). 

     In modelling the stress–strain relation of cracked concrete, it is assumed that 
the concrete changes from isotropic to orthotropic material with its axis oriented 
toward the maximal tensile stress. It is also assumed that a crack is formed in the 
plane perpendicular to principal tensile stresses which are assumed to be greater 
than the tensile strength or the reduced tensile strength of concrete, depending on 
the domain where the stresses have been calculated. In such a coordinate system, 
a constitutive stress–strain increment relation is considered and afterwards 
transferred into a global coordinate system. The stress state defined in the global 
coordinate system x-y-z is mapped onto the plane of the crack. In this plane a new 
coordinate system x*-y*-z* is formed in which the constitutive law of the stress–
strain relation is established. It can be noticed that this local coordinate system 
coincides with the coordinate system of the principal stresses at the moment of the 
formation of the first crack (Fig. 4). 

 

Figure 4: Stress states: (a) initial stresses in the Cartesian coordinate system; 
(b) principal stresses; (c) stresses in the cracked concrete defined in a 
local coordinate system x*-y*-z*. 
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     The matrix D* is the material matrix of the cracked concrete which, in the case 
of the appearance of one crack (e.g. in the direction 1), is defined as: 
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(1) 

 
whereas in the case of the appearance of two cracks (e.g. in the directions 1 and 
2), it is defined as: 
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(2)

 
     In this matrix, moduluses of elasticity E1* and E2* are defined by the equation: 

i

maxt

i

'
t

*
i

1

E





                                               (3) 

where α and tmax  are parameters defining tensile softening and i is the maximal 
tensile strain in the observed Gaussian point which is remembered for any 
integration point and any crack direction. As the material behaviour changes in 
correlation with the parameter α, the changes are relatively small, and it is 
recommended to use α = 0.6. The parameter α can be considered as an artificial 
material characteristic as: 

)l(/G '
cf t
                                                 (4) 

taking into account fracture energy, Gf, characteristic length of the sampling point, 

lc, and the uniaxial tensile strength of concrete, '
t .  

     Other material parameters in Eqs (1) and (2) are the reduced shear moduluses for 
the softened concrete, G12*, G23* and G31*, which can be defined by equation: 

G*G                                                        (5) 

where G is the initial shear modulus of the uncracked concrete and η is the 
reduction coefficient. This coefficient is calculated here as: 
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     In the case of the appearance of three cracks at one Gaussian point (in the 
directions 1, 2 and 3), it is necessary to correct the moduluses of elasticity 
according to Eq. (3) and the shearing moduluses according to Eq. (5). When the 
values of strain exceed a prescribed maximal strain (max) values in Gaussian 
points, one can assume that D* = 0 and that the failure of the material occurs. 

2.2.2 Plasticity model for concrete 
The non-linear behaviour of concrete for dominant compression stresses is 
described by an elasto-plastic material model based on the Mohr-Coulomb law. 
At multi-surface model presentation, the yielding surface is composed of six 
planes in the area of main stresses, defined by the following expressions: 
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(7)

     Implementation of a multi-surface presentation of the model (Fig. 5) enables a 
rapid convergence of the mathematical procedure. For dominant compression 
stresses, a matrix of consistence is developed for each sextant separately. In 
Eq. (7), c is the function of equivalent accumulated plastic strains obtained from a 
uniaxial test and can be expressed as: 
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where the relation between  and p , proposed by Meschke [3], is given as: 
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where p
c  is the value of p  at  = c, and cy is cohesion on the initial yield 

surface that bounds the initial elastic response. The coefficient cy in Eq. (9) is equal 
to 0.52. Equation (9) defines the hardening rule.  
     The softening law is controlled by the function for uniaxial compression, 
originally proposed by van Gysel and Taerwe [4] in the form: 

22

2

1p
2

c

p

1n

1n
1)(f

)(




























  (10)

120  High Performance and Optimum Design of Structures and Materials II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press



where p
c

p
1 /n   and p

c
p
c2 /)t(n  . Parameter t controls the slope of the 

softening function. The complete elastic, hardening and softening functions of 
concrete with respect to the total plastic strains are presented in Figure 5. 
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Figure 5: Triaxial presentation of the yielded surface development defined by 
hardening rule. 

2.3  A numerical model of prestressed tendons 

The non-linear behaviour of prestressed tendons is described by a 1D elasto-
viscoplastic model. The tendon element geometry is described by a second order 
space function which is determined by its projections [5]. These elements make it 
possible to model arbitrarily curved prestressing tendons in space, therefore they 
can be determined independently of a 3D finite element mesh. This is very 
important in the case when the prestressing tendon cannot be located in one plane, 
(Fig. 6). The transfer of prestressing force on concrete is modelled numerically 
(Fig. 7). 

       

Figure 6: Space curvature of prestressing tendon. 
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     +      

Figure 7: Numerical interpretation of prestressing force 

     Among losses influencing the decrease in the prestressing force, it is possible 
to compute the losses caused by friction and the ones resulting from the concrete 
deformations. The developed model makes it possible to compute prestressing 
structures in phases: before, during and after prestressing. The described models 
for concrete and reinforcement are implemented in a computer programme for a 
3D analysis of the prestressed concrete structures where the structures are 
discretized by 3D finite elements with an embedded 1D element of prestressed 
tendons. For a 3D analysis the components that remain the same are: 
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     Performing the Gaussian numerical integration of Eq. (11), one can obtain the 
values of the distributed load components along the tendon in the Gaussian points 
of the 1D tendon element (Px

g.p., Py
g.p. and Pz

g.p.). 
     To determine the influence of this distributed load along a 1D tendon element 
on the concrete element, it is necessary to map the coordinates of the Gaussian 
points from the global coordinate system to the local coordinate system of the 
parent concrete element. Finally, the components of the equivalent nodal forces 
due to the distributed load along the tendon defined in the global coordinate system 
can be expressed as: 
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2.3.1 Torsion of the tendon represented by space curvature 
In the prestressed structures discretized with a 3D model, the tendon sometimes 
cannot be placed into one plane in all its length. The influences along the tendon 
appearing as effects of the tendon forces depend on the curvature of the tendon k(s) 
which is characterized by a deviation of the axis of the tendon from the tangent on 
the tendon and by the changes in the position of a binormal. Binormals are not 
mutually parallel but form an angle . The consequence of these changes is the 
torsion of the tendon , and it can be mathematically expressed as: 

ds

d

ds

d 0b



                                               (13) 

where  is the angle between unit vectors b and b0 of the binormals drawn in two 
considered neighbouring cross-sections.  
     The binormal can be expressed as: 

 (14)

     Deriving the vector product given by Eq. (14) across the length s of the arch, 
the following equation can be obtained: 
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     Introducing Eq. (16) into Eq. (15) one can obtain: 
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     Considering the fact that the vector representing a derivation of the unit vector 

is perpendicular on it, one can conclude that the vector 
ds

d 0b  is perpendicular on 

b0 i.e. on the binormal. The vector product is perpendicular on both vectors in 

vector product i.e. on t0 and 
ds

d 0n  (see Eq. (17)). So, one can conclude that the 

vector 
ds

d 0b
 is perpendicular on tangent too. As the vector is perpendicular both 

000 ntb 
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on binormal b0 and on tangent t0, it coincides with the principal normal vector n0 
of the curve in the considered point and one can write: 
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or according to Eq. (13): 
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 The double sign in Eq. (19) appears because the vector ds

      (19) 
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can have an

identical or an opposite direction with respect to the vector n0. According to the 
sign convention, the torsion is positive if the rotation of the binormal is to the right 
regarding the unit vector of the tangent t0 while moving along the curve. Using the 
Frenet equation which shows the connection between the changes of the principal 
directions of the space curve, curvature k(s) and torsion, the torsion  of the tendon 
in the considered cross-section can be expressed with scalar components of the 
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     The above equations represent a mathematical formulation of the torsion of a 
tendon represented with a space curve. Considering the equilibrium equation on a 
differential element of the arch, it has been shown that the component of the load 
in the direction of the binormal on the tendon is equal to zero even in the case of 
spatially sited tendon.  

3  Numerical example 

The described modelling of the concrete and prestressing tendons is implemented 
in the computer programme PRECON3D 6. The prestressed beams and/or 
girders used in everyday engineering structures generally have I, T, Π or similar 
cross-sections. Beams and/or girders with such cross-sections, due to an apparent 
three-dimensional stress state, cannot be accurately analyzed with a two-
dimensional model. In this example, a prestressed Π-beam taken from Ref. 7 is 
analyzed. The beam has been tested experimentally and the results have been 
compared with the numerical ones obtained by PRECON3D 6. The prestressed 
Π-beam geometry and loading are shown in Figure 8 7. 

124  High Performance and Optimum Design of Structures and Materials II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 166, © 2016 WIT Press



 

 

 

Figure 8: The Π-beam geometry and loading 7. 

     The material characteristics of the prestressed Π-beam are 7: the modulus of 
elasticity of the concrete, Ec = 36000 N/mm2; Poisson’s ratio of the concrete,   
 = 0.25; the uniaxial compressive strength of the concrete, 'c = 53.1 N/mm2; the 
uniaxial tensile strength of the concrete, t = 7.4 N/mm2; the compressive strain of 
the concrete, c = 0.0035; the tensile strain of the concrete, t = 0.002; tensile 
correction coefficient,  = 0.6; the uniaxial tensile strength of the steel,  y = 1900 
N/mm2; the modulus of elasticity of the steel, Es = 195000 N/mm2; yielding strain 
of the steel, y = 0.010; and the cross-section area of the prestressed tendons,  
As = 614 mm2. 
     The prestressed Π-beam concrete structure is discretized with 104 three-
dimensional, 20-node finite elements and with 13 one-dimensional, 3-node finite 
elements for each tendon (Figure 9).  

 

Figure 9: The prestressed Π-beam finite element discretization 7. 
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Figure 10: The load-deflection diagram. 

     The load-deflection diagram of the mid-span point, under a concentrated force 
at the mid-span, up to the failure is presented in Figure 10. 
     The developed computer programme PRECON3D 6, among other modeling 
possibilities, enables the calculation of stresses in concrete and steel in 
characteristic points, deformed shapes of a structure in all phases, and the losses 
of a prestressed force caused by elastic shrinkage of concrete. 

4  Conclusion 

This paper presents a 3D non-linear material model for concrete based on the 
modified Mohr-Coulomb law for dominant compression stresses and the modified 
Rankine law for dominant tensile stresses. Non-linear triaxial behaviour of concrete 
includes all dominant influences. The model is defined by elementary material 
parameters, describing thus a very complex behaviour of reinforced and prestressed 
concrete structures as simply and effectively as possible.  
     The obtained results show good agreement with the ones found in literature, both 
experimentally and numerically. Furthermore, the programme PRECON3D allows: 
 
 Accurate geometry description of prestressed concrete structures (the complex 

geometry of concrete structures is discretized by 3D elements whereas arbitrarily 
curved spatial prestressing tendons are discretized by 1D elements); 

 Analysis and monitoring of structural behaviour in the phases: before, during 
and after prestressing, and during the exploitation of a structure; 

 Analysis of stresses and strains in characteristic sections; 
 Calculation of the influence of phase prestressing on stresses and strains in 

concrete and tendons; 
 Calculation of losses caused by friction and losses resulting from the concrete 

deformation. 
 

     Analyses carried out by numerical programme PRECON3D can be used as a 
numerical test for loading the structures until collapse. The results obtained in this 
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study show very good agreement with the experimental data and accuracy falls 
within an interval of 5–8% (the model is always on the side of safety). So, these 
numerical tests can be used for the computation of the bearing capacity of new and 
existing structures. In this way the expensive experimental tests can be reduced. 
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