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Abstract 

Information of soil pore-water pressure changes due to climatic effect is an 
integral part for studies associated with hill slope analysis. Soil pore-water 
pressure variations in a soil slope due to rainfall were predicted using Artificial 
Neural Network (ANN) technique with Thin Plate Spline (TPS) radial basis 
function. A radial basis function (RBF) neural network with network architecture 
of 8-36-1 (input-hidden-output) was selected to develop RBF model. Number of 
hidden neurons was selected using trial and error procedure whereas spread of 
the basis function was established using normalization method. Time series data 
of rainfall and pore-water pressure was used for training and testing the RBF 
model. The performance of the model was evaluated using root mean square 
error, coefficient of correlation and coefficient of efficiency. The results of the 
model prediction revealed that the model produced promising results indicating 
that TPS basis function is able to predict time series of pore-water pressure 
responses to rainfall. Comparison with other studies showed that the RBF model 
using TPS basis function can be used as alternate of Gaussian basis function for 
prediction of soil pore-water pressure variations.  
Keywords:  neural network, pore-water pressure, prediction, thin plate spline, 
radial basis function, rainfall. 
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1 Introduction 

Soil pore-water pressure reveals a highly nonlinear and complex behavior due to 
climatic changes in tropical regions particularly because of the spatial and 
temporal variability of rainfall, temperature, evaporation and soil characteristics.   
Excessive increase or highly positive pore-water pressure may lead to slope 
failures in land slide susceptible areas. Therefore, the knowledge of pore-water 
pressure is highly desirable in every slope stability analysis and studies related to 
hill slopes. In general, soil pore-water pressure variations highly depends on 
several factors i.e. rainfall, soil properties (grain size, porosity, density etc.), 
temperature, evaporation, solar radiation, soil depth, and antecedent conditions. 
Thus, reliable prediction of pore-water pressure is considerably data-demanding. 
However, few studies on prediction of soil pore-water pressure variations using 
artificial neural network techniques have been observed in recent years [1–3]. 
     Applications of artificial neural network (ANN) techniques to solve complex 
problems in civil engineering initiated in the late 1980s [4]. The extensive range 
of ANN applications for simulation, prediction and forecasting different 
variables in water resources engineering has been observed in recent years [1–3, 
5–11]. However, it appears that use of ANN applications to predict soil pore-
water pressure is relatively few [1–3]. Mustafa et al. [2] predicted soil pore-water 
pressure using scaled conjugate training algorithm in multilayer perceptron 
neural network. They obtained promising results and stated that neural network 
using scaled conjugate training algorithm is appropriate to estimate the pore-
water pressures. Mustafa et al. [1] estimated the pore-water pressure using radial 
basis function neural network technique. They used Gaussian basis function to 
predict the pore-water pressure at two different sites with the same model. They 
investigated that the model trained with a dataset of slope but it was tested using 
the dataset of different slope having similar soil characteristics. Furthermore, 
they investigated that complex and nonlinear behavior of soil pore-water 
pressure although a function of a number of variables but can be predicted using 
RBF modeling with a modest number of input variables.  
     Since, few studies have been observed to predict soil pore-water pressure 
using ANN. However, it appears radial basis function neural network using thin 
plate spline basis function has, so far, not been used to prediction soil pore-water 
pressure variations in response to rainfall. Therefore, the objective of this study 
is to predict soil pore-water pressure variations in response to rainfall using thin 
plate spline basis function. 

2 Data source and study area 

The time series of rainfall data and pore-water pressures recorded at soil depth of 
0.5 m for a period of 13 months were used. The data were collected in 1998–
1999 through a field instrumentation program of a residual soil slope in Yishun, 
Singapore [12].  The maximum and minimum values of pore-water pressure in 
the data are 5.5 kPa and -55.9 KPa respectively. The entire monitoring for pore-
water pressure measurements were obtained at four different soil depths (i.e. 
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depth of 0.5, 1, 2, and 3 m). The primarily objective of data collection was to 
understand rainfall-induced slope failure mechanism and behavior of 
hydrological responses to the slopes in tropical climate conditions.  Climate at 
the study area is hot and humid equatorial with no marked dry season. The 
temperature variations at the site are very few throughout the year with an annual 
average temperature of 26.6°C and a relative humidity of 84% [13].  Generally 
the soil found at the study area consist of residual soils from the Bukit Timah 
granite with small variation from silty or clayey sands to silty or sandy clays,  
subjected to the degree of weathering, but are commonly sandy clayey silt [12]. 

3 Radial Basis Function neural network 

Radial Basis Function neural network was recognized as an alternative to 
Multilayer feed forward neural network in the late 1980s. The derivation of RBF 
is established through classical techniques like clustering, functional 
approximation, spline interpolation and mixture models [14]. Considering the 
complex and highly non-linear behavior of rainfall and pore-water pressure, the 
most appropriate neural network for modeling rainfall pore-water pressure 
behavior should have the capability to capture any continuous function; like 
radial basis function. Previous studies on application of RBF type ANN to water 
resources engineering problems indicate that RBF neural network presents 
superior generalization capability to capture complex natural non-linear 
behavior.  

3.1 RBF model architecture 

The RBF neural network model developed consists of three layers. Hereafter will 
be called as RBF–TPS model; RBF-TPS stands for Radial Basis Function using 
Thin Plate Spline function. The first layer is known as input layer, the second 
layer is called hidden or radial basis function layer and the third layer is known 
as output or linear layer. Radial basis function or hidden neurons in the hidden 
layer are denoted by HN (Figure 1). The selection of appropriate architecture 
particularly the number of input neurons is highly important to achieve an 
effective and efficient model. Recently, Mustafa et al. [1] investigated that the 
number of input neurons must contain the antecedent values of rainfall and pore-
water pressure while establishing a neural network model for estimation of pore-
water pressure variation. They examined the rainfall and pore-water pressure 
data from autocorrelation analysis within the dataset and cross-correlation 
analysis between both datasets (i.e. rainfall and pore-water pressure data). They 
observed that current pore-water pressure value is highly dependent on the five 
antecedent pore-water pressure values. Furthermore, two antecedent values in 
rainfall data have greater influence on the current value of the pore-water 
pressure. Therefore, they suggested that eight numbers of inputs containing five 
antecedent pore-water pressures, two antecedent rainfall values and one current 
rainfall would be appropriate to predict current pore-water pressure. Therefore, 
in this study, a similar configuration was adopted for the number of neurons in 

High Performance and Optimum Design of Structures and Materials  617

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 137, © 2014 WIT Press



the input layer. Thus, the input neurons structure is represented by the following 
equation. 

Pt = f (Rt, Rt-1, Rt-2, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5) (1) 

where, P and R represent the pore-water pressure and rainfall values. Whereas, t 
is current time and t-1 to t-5 are the one to five steps antecedent time data. There 
is no hard and fast rule to select the number of basis functions or hidden neurons 
in the hidden layer. Therefore, in this study the appropriate number of hidden 
neurons was selected by trial and error. It was observed that 36 numbers of 
hidden neurons were sufficient to adopt the nonlinear pattern between the inputs 
and outputs variables. Since, the output expected from the network is only one 
(current pore-water pressure). Therefore, the output layer consists of one neuron 
only. Thus the structure of the selected network can be written as 8-36-1 (i.e. 
input-hidden-output neurons). The spread of the basis function was selected 
using normalization method of spread determination. According to this method 
the spread is twice the average difference between the successive centers of the 
basis functions [15]. The value of spread for the basis function is 1.8.  

3.2 Input data selection 

Pattern recognition and identification of highly nonlinear behaviors between 
variables by a neural network training algorithm is highly dependent on the 
appropriate selection of the training dataset. To achieve the successful mapping 
of the nonlinear behavior, the training dataset should be true representative of the 
nonlinear system. In this study, the available synchronized data of 13-month data 
were divided into two sets (i.e. training and testing). The total number of the time 
series of pore-water pressure and rainfall data consists of 4000 values. The data 
from Dec 1998 to July 1999 (3000) about 75% of the data were used in training 
and from July 1999 to November 1999 (1000) about 25% data (1000) for testing 
the model. 

3.3 Data normalization 

Preprocessing of the data in terms of scaling the complete data set into a 
specified range facilitate the network to converge easily. This ensures fast 
processing, increase the convergence rate during training and facilitates the 
network to minimize error during testing stage [16]. Since the pore-water 
pressure data contains negative pore-water pressure values as well as positive 
values. Therefore, the complete datasets of time series of pore-water pressure 
and rainfall data was normalized by transforming the data to the range of (–1 to 
1) using the following equation 

                                      (2) 

where, Xn is the normalized data series, zn represents the real data series and zmin, 
zmax are the minimum and the maximum value of the real data series respectively, 
1 ≤ n≤ N and N is the number of data. 
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Figure 1: Schematic representation of RBF–TPS model architecture. 

3.4 Performance evaluation criteria 

Root mean square error (RMSE) is commonly used statistical measures to 
evaluate prediction accuracy in hydrological modeling. An RMSE value close 
to zero indicates good performance of the model. In this study, RMSE and 
coefficient of determination (R2) were used to evaluate the performance of 
the predictions made by the model. Coefficient of determination indicates the 
closeness of the predicted values to the observed values and R2 values close to 
one indicates a good agreement between the observed and predicted data. The 
equation of RMSE is shown in the following equation; 
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where, zn and yn are the observed and predicted values of pore-water pressure, 
respectively, N is the number of observations for which the error has been 
computed. 
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4 Results and discussion 

Radial basis function neural network model using Thin Plate Spline basis 
function was established with optimal network configuration of 8-36-1 (input-
hidden-output neurons). The RBF-TPS model was able to follow the nonlinear 
behavior of soil pore-water pressure variations in response to rainfall patterns. 
The model was evaluated using commonly used statistical measures RMSE and 
coefficient of determination to examine the prediction accuracy between the 
observed and predicted values. The summary of performance statistics of the 
developed model during training and testing stages is shown in Table 1. The 
summary statistics shows that the RBF-TPS model produced RMSE = 0.8922 
and R2 = 0.9915 during training stage. This indicates the learning strength of the 
model during the network training process. The RBF-TPS model was trained 
very well and produces very small RMSE error. Coefficient of determination 
close to one suggests that the trained pore-water pressure data are very close to 
the observed data.  

Table 1:  Performance statistics of RBF-TPS model during training and testing. 

Performance criteria Training Testing 

RMSE 0.8922 1.4098 

R2 0.9915 0.9781 

 
     However, it was observed that the RBF-TPS model produced slightly higher 
RMSE error (RMSE = 1.4098) and lower coefficient of determination (R2 = 
0.9781) during testing stage as compared to the training. This difference in 
performance can be attributed to the difference of input and target data used 
during training and testing. Since during the training stage targets are presented 
to the network along with the input data to minimize the network error. 
Alternatively, only the input data is presented to the network during testing 
stage.  
     Time series of observed pore-water pressure data was compared with the 
predicted data during training stage, which indicates that the model has 
adequately captured the nonlinear pattern of the data (Figure 2). The predicted 
data track the exact behavior of observed values. It was observed that all the 
predicted data overlapped the observed data with an exception of very few values 
at the peaks. This difference between the observed and predicted values at the 
extreme values may be overcome by the use of clustering techniques. However, 
in this study these exceptions amongst a large dataset of 3000 values were 
ignored. A similar pattern was observed during the testing stage of the RBF-TPS 
model (Figure 3). The RBF-TPS model successfully predicted the observed data 
of pore-water pressure during the testing stage showing an excellent 
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generalization ability of the developed model. However, very few data at the 
extreme values have slight difference between the observed and predicted data 
which was also observed during the training stage. Considering the highly 
nonlinear and complex behavior of pore-water pressure data, overfitting problem 
was not observed during any stage of model development.  
 

  

Figure 2: Comparison between the observed and predicted time series of 
pore-water pressure data during training the RBF-TPS model. 

  

Figure 3: Comparison between the observed and predicted time series of 
pore-water pressure data during testing the RBF-TPS model. 

     A comparison between the predicted and observed pore-water pressure data 
with the line of perfect agreement during training and testing stages is shown in 
Figures 4 and 5 respectively. It is apparent from the plots that the predicted and 
observed pore-water pressure values showed a good agreement with the line of 
perfect agreement and produced coefficient of determination close to one (R2 = 
0.9915 (training) and R2 =0. 9781 (testing)). The difference between the 
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observed and predicted values at the extreme positions particularly at the peak 
values which was observed in Figures 2 and 3, were appeared as outliers in 
the training and testing plots (Figures 4 and 5). However, disregarding the 
remarkable outliers, the synchronization between the observed and predicted data 
with line of perfect agreement recommends the suitability of the selected basis 
function for the prediction of pore-water pressure. 
 

 

Figure 4: Comparison between the observed and predicted data with line of 
perfect agreement (training stage). 

 

 

Figure 5: Comparison between the observed and predicted data with line of 
perfect agreement (testing stage). 

     Obviously, all the results recommend the suitability of Thin Plate Spline basis 
function neural network for prediction of soil pore-water pressure variations in 
response to the rainfall. The results obtained in this study are comparable with 
the previous studies [1–3] conducted by using Gaussian function and multilayer 
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perceptron training algorithms. The results suggests that Thin Plate Spline basis 
function neural network can be used as an alternative to the Gaussian basis 
function and MLP training algorithms for prediction of variations of pore-water 
pressures. Disregarding to the tedious exercise involved in trial and error method 
for selection of appropriate number of basis functions. The architecture 8-36-1 
with spread value of 1.8 was found appropriate to achieve high performance 
RBF-TPS prediction model for pore-water pressure variations.  

5 Conclusions 

A Radial Basis Function neural network model using Thin Plate Spline basis 
function has been developed to predict variations of a time series of pore-water 
pressure in response to rainfall in a slope. An appropriate network configuration 
identified as 8-36-1 with spread 1.8 was capable for mapping the complex 
behavior of pore-water pressure pattern responses to rainfall. The study indicated 
that RBF–TPS basis function is suitable for applications to solve complex 
problems and complications involved in prediction of nonlinear behavior 
between the variables such as pore-water pressure and rainfall. Furthermore, 
RBF–TPS model is competitive with the other modeling techniques such as 
Gaussian basis function, MLP training algorithms etc. for prediction of pore-
water pressure. 
     Although, the RBF–TPS model lacks the ability to provide a functional 
relationship between the variables unlike a physical based mathematical model, 
still it is advantageous as it can be developed with limited number of parameters. 
The results also showed a good agreement between predicted and observed data 
of pore-water pressure variations.  
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