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Abstract

Structural designs are progressively more conditioned by uncertainty in a wide
range of fields, and new designs have to meet the requirements of safety and
efficiency. Probabilistic optimization is a powerful tool able to improve and
optimize initial designs into others which are more efficient. In spite of the
continuous growth of computational power, this kind of optimization usually turns
out to be unaffordable, due to the computational cost of the methods involved.
However, parallel computing and surrogate models can overcome this drawback
by reducing drastically the total computational cost of the process. In this paper, a
survey of the performance of several surrogate models combined with reliability-
based design optimization is presented. Two examples are selected to show the
behavior of the methods when applied to different models.
Keywords: uncertainty quantification, reliability based design optimization,
surrogate models.

1 Introduction

Reliability-based design optimization (RBDO) is a design technique that is applied
typically in aerospace and automotive engineering. An intensive review can
be found in [1–3]. This kind of optimization tries to minimize an objective
function, which in structural optimization is usually related with the cost of the
structure, subjected to probabilistic constraints. These probabilistic constraints
involve solving a reliability analysis of the structure. Consequently, two types of
variables can be found in the process. Design variables, which are modified in
the optimization cycle, and random variables, which are the source of uncertainty.
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Besides, design variables can also be affected by uncertainty. These variables are
defined as random design variables.

The formulation of a RBDO problem can be set out in different ways. Double
loop or bi-level approaches consider the reliability within the optimization loop.
This is the case of the reliability index approach (RIA) or the performance
measure approach (PMA). In RIA, the outer loop considers non-deterministic
constraints which are based on reliability indexes, while in the inner loop reliability
indexes are obtained from defined limit state function. On the other hand, non-
deterministic constraints of the PMA outer loop are based on limit state functions,
whereas in the inner loop the limit state functions are obtained from defined
reliability indexes. Mono-level approaches replace probabilistic constraints with
approximate deterministic values, converting the double loop into a single loop.
Decoupled approach solves the RBDO problem as a sequence of deterministic
optimization procedures, like sequential optimization and reliability assessment
(SORA) method. In this work, a double loop framework with PMA has been
selected as methodology.

However, the application of these methods to time-consuming models
sometimes leads to unaffordable computational times. In order to solve this
problem, surrogate models emerge as a suitable alternative. There is a wide-range
of surrogate methods, and some interesting information can be found in [4, 5]. In
this work, several surrogates models are used with RBDO in order to show its
accuracy and computational improvements. A brief description of the surrogate
algorithms employed in this work is presented next.

2 Surrogate models

2.1 Polynomial

Polynomial surrogate models are defined employing multivariate polynomial
according to the general expression

f̂P (x) = c0 +

p∑
k=1

( n∑
i1=1

· · ·
n∑

ik>ik−1

ci1···ik

k∏
j=1

xij

)
, (1)

where f̂p is the response of the surrogate model, p is the order of the polynomial,
n is the number of variables, xij are the components of the n-dimensional vector
of variables and the terms c0 and ci1···ik are the polynomial coefficients.

2.2 Kriging

Kriging emulator f̂K [6, 7] can be expressed as

f̂K (x) = κ (x)
T
ρ+ ε (x) , (2)
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where κ (x)
T
ρ is a trend function, which usually is a low order polynomial, and

ε (x) is a stationary Gaussian process error model that is used to correct the trend
function

The stationary Gaussian process has zero mean, constant variance and
a stationary autocorrelation function r (x,x′). The most used class of
autocorrelation functions r (x,x′) is the anisotropic generalized exponential
model

r (x,x′) = exp

(
−

D∑
k=1

θk|xk − xk′|
γ
)
, (3)

where D is the number of input dimensions, θk are the correlation parameters and
γ is a parameter which must satisfy 0 < γ < 2.

2.3 Multivariate adaptive regression splines

The multivariate adaptive regression splines (MARS) consists of a non-parametric
regression technique, first described by Friedman in 1991 [8]. This surrogate
model approaches the objective function by means of a continuous surface of
splines, and is of the form

f̂MARS (x) =

Mb∑
m=1

amBm (x) , (4)

where am are the coefficient of the power basis functions Bm and Mb is the
number of functions.

2.4 Artificial neural networks

The artificial neural network (ANN) model consists of training a network of
neurons by adjusting its connections weights. One of the first approaches was
made by [9]. The ANN surface fitting method used in this work employs a
stochastic layered perceptron (SLP) artificial neural network based on the approach
of Zimmerman [10], which is of the form:

f̂ANN (x) ≈ tanh {tanh [(xA0 + θ0)A1 + θ1]} (5)

where the termsA0, θ0,A1 and θ1 are the matrices and vectors that correspond to
the neuron weights and offset values in the ANN model.

2.5 Moving least squares

Moving least squares (MLS) is a further generation of weighted least squares
where the weighting is recalculated for every new point [11]. Weighted least
squares weigh the residual terms so the optimal coefficients governing the
polynomial regression function f̂ (x) are obtained by minimizing the weighted
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sum of squares at N samples:

N∑
n1=1

ωn

(∥∥∥f̂ (xn)− f (xn)
∥∥∥) (6)

3 Application examples

The methodologies presented are applied to two examples. The textbook test
function -minimizing the 2D case subject to a probabilistic constraint-, and a
stiffened composite panel, minimizing its weight and subject to two probabilistic
constraints. These examples are carried out using PMA as RBDO methodology,
and with first order reliability method (FORM) as reliability analysis method.
Optimization is executed by sequential quadratic programing (SQP). The methods
were implemented using DAKOTA framework [12] and the analyses were run in a
high performance computing cluster with 768 computing cores, a theoretical peak
performance of 5.1 TFLOP’s and a physical memory of 1.8 TB.

3.1 Textbook function

The problem is formulated as

minFT (x) =

n∑
i=1

(xi − 1)
4
, (7)

subject to
GT (x) = Φ−1 (1− p [gT (x) 6 0])− βmin > 0, (8)

−2 6 xi 6 1, (9)

where βmin = 3 and the limit state function gT is defined as

gT (x) = −5
n∑
i=1

xi. (10)

This constraint moves the original unconstrained minimum in the chosen domain
from (1, 1) to the deterministic optimum (0, 0), whereas the initial design is
located at (−1.75,−1.75). All the variables of the problem are considered as
random design variables with normal distribution and a standard deviation of
σ = 0.1. The order of the surrogate models chosen for this function are of less
order than the function, with the aim of avoiding the exact reproduction of the
original function.

Table 1 shows the results of applying RBDO with several surrogate models. As
it can be seen, all models are sensitive to the approximation order. For instance,
ANN models are more accurate with an elevate number of neurons and MARS
with a high number of bases, as well as MLS with a high order approximation.
On the other hand, polynomials are more accurate with quadratic approximations.
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Table 1: RBDO results of the textbook function comparing accuracy and
computational cost using different surrogate methods and a global
sampling strategy with 20 samples.

Surrogate method Time (s) Evaluations Iter. x∗
1 x∗

2 FT (x∗) GT (x∗)

Emulator Order Inner Outer

Non-surrogate DO 4.31 — 8 4 0.0000 0.0000 2.0000 −3.11 · 10−13 d

Non-surrogate RBDO 39.62 311 10 4 −0.2122 −0.2122 4.3179 2.82 · 10−4

Polynomial Linear 0.15 t 354 14 5 1.0000 −1.2630 11.6879 −1.62 · 10−9

Quadratic 0.24 t 507 20 8 −0.1888 −0.2354 1.8130 −2.87 · 10−4

Cubic 0.23 t 372 15 6 −1.2630 1.0000 23.4772 −1.57 · 10−9

Kriging Constant 0.56 t 279 10 4 −0.2124 −0.2119 4.3186 2.70 · 10−4

Linear 21.39 t 372 10 4 −0.2116 −0.2127 4.3182 2.78 · 10−4

Quadratic 137.35 t 813 26 11 −0.2125 −0.2117 4.3206 1.82 · 10−11

MARS 3 bases 0.16 t 4266 31 13 0.0099 −0.4342 11.6510 −8.58 · 10−6

5 bases 0.14 t 4362 38 17 −0.4142 −0.0101 2.8604 5.72 · 10−6

10 bases 0.22 t 2706 33 15 −0.3162 −0.1081 4.7154 8.58 · 10−6

ANN 5 nodes 0.24 t 1122 27 12 −0.3320 −0.2861 4.9082 1.89 · 10−4

10 nodes 0.12 t 2331 37 16 −0.2032 −0.2026 4.8101 2.00 · 10−6

15 nodes 0.26 t 1008 36 15 −0.1986 −0.2145 4.3992 −8.60 · 10−6

18 nodes 0.12 t 1161 36 15 −0.2167 −0.1955 4.2500 3.04 · 10−6

MLS Linear 0.42 t 600 24 12 −0.3925 −0.0317 4.8347 −3.81 · 10−10

Quadratic 11.30 t 789 28 13 −0.2211 −0.2031 4.4793 −5.70 · 10−11

Cubic 4.27 t 309 19 10 −0.2045 −0.2199 4.2603 2.82 · 10−4

d This value is for the constraint expressed as deterministic using gT (x) > 0 (eq. (10)).
t Computational times of surrogate-based RBDO do not include the sampling time, which is 4.073 seconds.

In terms of accuracy, kriging models show the best performance due to the
capabilities of their correction of the trend function, which ensures that the model
passes for the value of every sample. Polynomial models have the worse results,
as well as MARS with a low number of bases. MARS, ANN and MLS reach good
results if the order of the approximation is adequate.

In terms of computational cost, surrogate-based optimization reaches
convergence in a time which is several orders of magnitude lower than the non-
surrogate case. There are some exceptions where the convergence of the surrogate
model is expensive, like kriging and MLS models. However, if the simulation is
expensive, the saves are notorious whatever the chosen surrogate model is.

Despite the computational improvements of this methodology, there are some
points that must be had into account. It is intuitive that the surrogate model should
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give an accurate response function in the area of the domain where the RBDO
process would require information. However, this is not always possible.

When random design variables are considered, accurate responses are required
from both optimization algorithm and reliability analysis. Figure 1 shows the
points required by both process in the whole domain. As shown, local samplings
are insufficient, and global sampling requires great accuracy in several areas of the
whole domain.
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Figure 1: Textbook function in the chosen domain. The samples generated by the
design of experiments process are shown, as well as the points
calculated in the non-surrogate RBDO process using PMA and FORM
methods.

The accuracy of the response functions is given by the design of computational
experiments process and the selected surrogate model. In this case, results are
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accurate enough because the response functions are simple, but with more complex
functions a high number of samples would be required to allow an accurate
reliability analysis convergence.

3.2 Stiffened composite panel

These methods are also applied to a stiffened panel with a composite carbon/epoxy
skin reinforced by four aluminum frames and stiffeners (figure 2). The structure
is under an edge compression load applied along the main dimension of the panel
and a shear load applied along the other two edges.

The composite material has an ultimate longitudinal strength in tension and
compression of 2070 MPa and 1160 MPa, respectively. The ultimate transverse
strength in tension is 29 MPa and 157.9 MPa in compression. The interplane shear
strength is 91 MPa. All of these quantities are considered as deterministic design
parameters. The stacking sequence of the composite skin is [±45/90/0]s and the
thickness of a stacking sequence t is a random design variable with a coefficient of
variation of δt = 0.05, an initial point of t0 = 5.0 mm and lower and upper bound
of 3 mm and 5 mm, respectively. Besides, the longitudinal Young’s modulus E1

is considered as random variable, with a mean value of µE1
= 129.8 GPa and a

coefficient of variation of δE1
= 0.05. The frames and the stiffeners are made of

aluminum with the elastic modulus of 72 MPa.

Figure 2: Finite element mesh. Figure 3: First buckling mode.

The objective function is the total weight of the structure and two limit state
functions have been taken into account as design constraints to verify the structural
reliability. The first limit state evaluates the buckling factor λ of the first buckling
mode (figure 3), which must be greater than a minimum value λmin = 100. This
condition can be expressed as

g1 =
λ

λmin
− 1. (11)

The second limit state is based on the Tsai-Wu first ply failure criterion, which
takes into consideration the interactions between different stress components and
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is expressed as

g2 = 1−
[

σ2
1

XtXc
+

σ2
2

YtYc
+
τ212
S2
− σ1σ2√

XtXcYtYc
+(

1

Xt
− 1

Xc

)
σ1 +

(
1

Yt
− 1

Yc

)
σ2

]
(12)

where Xc and Xt are the compressive and tensile strengths parallel to the fiber
directions. Yc and Yt are the compressive and tensile strengths orthogonal to the
fiber directions and S is the shear strength. σ1, σ2 and τ12 are the stresses in
material directions 1 and 2 and the shear stress, respectively. Both constraints are

Table 2: RBDO results of the stiffened composite panel comparing accuracy
and computational cost using different surrogate methods and a global
sampling strategy with 20 samples for the deterministic optimization and
40 for RBDO.

Surrogate method Time (s) Evaluations Iter. t∗ FT (x∗) Design constraints

Emulator Order Inner Outer Buckling Tsai-Wu

Non-surrogate DO 137.49 — 7 3 4.3975 7.5083 1.7882 −9.89 · 10−5 d

Non-surrogate RBDO56 318.40 5290 16 8 5.2173 8.7667 1.8804 −4.70 · 10−7

Polynomial Linear 1.11 t 822 6 4 5.0000 8.4332 1.5007 −4.31 · 10−2

Quadratic 0.65 t 6426 12 6 5.2147 8.7627 1.8758 −2.44 · 10−4

Cubic 1.14 t 6738 12 6 5.2153 8.7637 1.8777 −2.39 · 10−4

Kriging Constant 60.33 t 1326 12 6 5.2179 8.7676 1.8812 −2.16 · 10−4

Linear 456.05 t 1170 12 6 5.2166 8.7657 1.8795 −2.99 · 10−4

Quadratic 484.46 t 1437 12 6 5.2168 8.7660 1.8798 −3.00 · 10−4

MARS 5 bases 0.22 t 3279 12 6 5.2099 8.7553 1.8440 −9.71 · 10−5

10 bases 0.32 t 4623 16 8 5.2187 8.7689 1.8879 5.05 · 10−9

15 bases 0.16 t 3267 17 9 5.2085 8.7533 1.8745 −8.24 · 10−6

ANN 10 nodes 1.21 t 14439 12 6 5.2836 8.8703 1.9000 1.90

20 nodes 1.18 t 2934 16 8 5.2218 8.7753 1.8871 2.79 · 10−5

30 nodes 0.66 t 4107 17 9 5.2136 8.7612 2.4036 3.87 · 10−4

d This value is for the constraint expressed as deterministic using g1 (x) > 0 (eq. (11)) and g1 (x) > 0

(eq. (12)).
t Computational times of surrogate-based RBDO do not include the sampling time, which is 17.89 seconds for the
deterministic sampling and 21.58 second in the probabilistic case.

defined in base of these limit state functions as

Gi (x) = Φ−1 (1− p [gi (x) 6 0])− βmin > 0, (13)

where βmin = 3.
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Table 2 show the results of applying RBDO with several surrogate models in the
composite panel. The inclusion of uncertainty in the stacking thickness and in the
Young’s modulus moves the optimum thickness from 4.39 mm in the deterministic
case to 5.21 in the probabilistic optimization case. This time, differences between
non-surrogate and surrogate approaches in terms of computational cost are very
noticeable, and consequently the use of surrogate model are recommended. The
increment in cost of evaluating a time-consuming simulation, makes the non-
surrogate approach less competitive. Again, kriging emulator has the slower
convergence in the training process, and other models reach similar total wall-
clock times.

In terms of accuracy, all models reach satisfactory results if the order of the
approximation is enough. For instance, a linear polynomial approximation is
clearly insufficient in this example, as well as a ten nodes ANN is. But, in contrast,
when more nodes are used in the ANN, and a high order polynomial is considered,
accurate results are obtained. In the case of kriging model this phenomena is
much less influent because these errors are avoided by the stationary Gaussian
process error models ε (x) (2). In contrast with the previous example, MARS
model is accurate in all the approximations considered. However, a bad choice
in the selection of the number of bases can lead to inaccurate results.

4 Conclusions

This paper presents a review of some existing procedures of surrogate
modeling and their performance when are combined with reliability-based design
optimization. With this aim, two examples have been employed.

As a general conclusion it can be said that the use of surrogate models represent
a notable improvement in terms of computational cost. However, this improvement
can be associated with a reduction of accuracy. This reduction can be prevented
selecting the adequate order of the approximation and providing an enough
quantity of samples of the region of interest. Specifically, this can be made by
giving large data of the whole domain, or data in the neighborhoods of the solution.

In terms of accuracy, polynomial approximations give the worse results, while
kriging models stand out as the more accurate. MARS, ANN and MLS, as well as
polynomials, are very sensitive to the order of the approximation.
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