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Abstract 

The present study concerns the optimal design of elastic perfectly plastic 
structures subjected to a combination of fixed and seismic loads. In particular, 
plane frames are considered and suitable measures of the beam element cross 
sections are chosen as design variables. The optimal design is required to behave 
in a purely elastic manner when subjected just to the fixed load and to have the 
capability to eventually shakedown when simultaneously subjected to fixed and 
seismic loads. Due to the natural uncertainness related to the definition of the 
seismic load history, a new probabilistic approach is proposed, consisting into 
two subsequent search steps. At first a suitably chosen large number of minimum 
volume designs are obtained for as many random seismic load histories deduced 
by a suitably chosen reference power spectral density function, determining a 
probabilistic distribution of optimal volumes. Subsequently, the volume obtained 
with probability 1 is assigned as the optimal structural volume, and a new 
optimal design problem is solved in order to obtain the material optimal 
distribution. The latter is a minimum elastic strain energy one for fixed volume. 
The performed applications confirm the effectiveness of the proposed procedure. 
Keywords:  minimum volume design, seismic loading, shakedown behaviour, 
probabilistic approach. 

1 Introduction 

Structural optimization is a topic of fundamental interest in structural 
engineering (see, e.g. [1–8]). As it is well known, the formulation of a structural 
optimization problem requires, at first, the definition of a suitable objective 
function involving appropriate relevant structural parameters (design variables). 
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The latter can concern the geometry, the elastic properties, the topology of the 
structure, etc. Some admissible ranges for the design variables are usually 
adopted and the state equations are introduced. Furthermore, appropriate 
admissibility criteria are defined. These criteria are usually written in terms of 
behavioural constraints for the structure, very often they express mechanical 
conditions and they usually identify with different structural limit conditions. 
     The structural optimization problems are very often formulated as search for 
the minimum structural weight, which substantially provides a quantity 
proportional with the minimum cost to be suffered for the structure construction. 
     On the other side, the choice of the admissibility conditions is usually 
complex and specific of the particular optimization problem to be formulated. 
These conditions are represented by inequalities identifying one or more limit 
behaviour for the material or the structure. If reference is made to elastic plastic 
structures, the limit conditions can characterize: the purely elastic behaviour; the 
elastic shakedown behaviour; the plastic shakedown behaviour and/or the 
incremental collapse; the instantaneous collapse (see, e.g. [9 13]). An important 
aspect to be faced is that the most dangerous loads (wind, earthquake) are time-
dependent and random. Most of the effected study are related to a deterministic 
approach (see, e.g. [14–16]), even if some paper exists accounting for the 
randomness of the load, but limiting to the structure elastic behaviour (see, e.g. 
[17, 19]). As a consequence, an efficient and general optimization tool which 
takes into account even these two characteristics is needed. 
     The aim of the present paper is to propose a new probabilistic approach for 
continuous variable optimal structural design of steel frames taking into account 
the randomness of the loading. The optimality condition is focused on the elastic 
response under fixed loads and on the shakedown behaviour under a  
combination of fixed and seismic loads. The dynamic structural response is 
obtained in the time domain by integrating the equation of motion by means of 
the suitable tools available in literature. The proposed approach can be 
synthetically described as constituted by the following steps: 
1) an appropriate large number of accelerograms are generated from an assigned 

power spectral density function by means of the Monte Carlo approach; 
2) for each accelerogram, a minimum volume design problem for the elastic 

perfectly plastic frame structure subjected to the assigned combination of 
fixed loads and seismic actions is solved; 

3) the obtained large number of volumes is random as the related generated 
accelerogram on which they depend and they are used to define the 
corresponding volume cumulative probability function; 

4) the volume with probability 1 is assigned as optimal value  optV ; 

5) a load domain is defined by the accelerograms generated at the step 1) whose 
corresponding volume is not greater than a suitable per cent of optV ; 

6) the final optimal design is obtained as the optimal distribution of material 
which minimizes the corresponding strain energy function, being assigned 
the optimal volume defined at step 4), for the structure subjected to any load 
history within the dynamic load domain introduced at step 5). 
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     In order to build the referenced seismic load domain a suitable number of 
accelerograms are chosen defining the relevant basic conditions. The considered 
accelerograms are those related to a suitably chosen interval of the volume 
cumulative distribution function where the upper bound is the selected per cent 
of the optimal volume. Once defined the relevant dynamic load domain, any 
admissible dynamic load history is given as a suitable combination of the basic 
load conditions, following the unrestricted dynamic shakedown theory [20, 21]. 
A numerical application is effected, related to a flexural two-floor two-span 
elastic perfectly plastic plane steel frame.  

2 The frame structure and the load modelling 

In this section some fundamentals, mainly regarding the definition of appropriate 
model both for the frame structure and for the acting loads, are introduced. 
     As it has been stated in the introduction section the structure typology 
examined in this paper is a frame one. The frame is constituted by beam 
elements described by the Navier kinematical model (Fig. 1a), b)). 

 

a)  
 

b)  
  

Figure 1: a) Plane frame; b) mechanical and kinematical quantities. 
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     Since the material element behaviour beyond the elastic limit has to be 
considered, appropriate plastic hinges are located at the extremes of each 
element and in the middle points, where necessary (Fig. 2).  

 

 
 

Figure 2: Location of the plastic hinges. 

 
     The loadings acting on the frame structure are of two different types: the first 
one is the fixed load related to the structural weight and to the relevant 
permanent actions; the second one is related to the seismic actions and it is 
intrinsically random in intensity as well as dynamic; the two described loads, 
simultaneously acting, determine the reference load combination. The two 
emphasized seismic loading features represent two fundamental aspects to be 
faced by the structural designer. Furthermore, it is worth noticing that a structure 
can suffer several seismic loadings during its life, each different for intensity and 
duration. In this paper attention is focused on the shakedown behaviour of the 
structure and, as a consequence, it is necessary to refer to the theory of 
shakedown under dynamic loadings. 
     In literature this problem can be faced in the framework of the Ceradini 
theorem [22]; however this theorem can be applied when the acting load on the 
structure is regarded as a never-ending one. The latter assumption is unrealistic 
especially when a seismic action is considered. Another approach is that of the 
so-called unrestricted dynamic shakedown [20, 21] which requires the definition 
of an appropriate domain characterized by some known basic load conditions. 
Clearly, this approach conflicts with the randomness of the seismic action. In 
order to account for the described features in the paper the probabilistic approach 
described at the end of the foregoing section is proposed. 
     Making reference to the seismic actions, let us consider the relevant frame as 
a flexural plane frame characterized by bn  beam-type elements, Nn  standard 

nodes (each characterized by three degrees of freedom), by masses concentrated 
at each node and just subjected to an horizontal ground acceleration  g tu . The 

structure is modelled as a Multi-Degree-Of-Freedom (MDOF) one and the 
dynamic equilibrium equations can be written in the following form: 

 
        gt t t t  M u Βu K u f  , (1) 
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being  tu ,  tu  and  tu  the nodal displacement, velocity and acceleration 

vectors, respectively, where the over dot means time derivative; furthermore, 

   g g tt u f Mτ  is the loading vector, M  and B  are the mass and damping 

matrices of order 3 Nn , K CDC  is the frame external square stiffness matrix 

of order 3 Nn  and τ  is the 3 Nn  influence vector. C  is the compatibility 

matrix of dimensions 6 3b Nn n    containing suitable defined coordinate 

transformation matrices related to each beam element (being its transpose C  the 
equilibrium matrix) and D  is the frame internal (square block diagonal) stiffness 
matrix of order 6 bn . The initial conditions associated to eqn (1) are assumed to 

be  0 u 0 ,  0 u 0 . Eqn (1) can be solved directly by making reference to 

the tools available in literature [23] or with a classical modal technique. Once 

 tu  is known for each instant, it is possible to calculate the beam extreme cross 

section displacement vector and the generalized stress one by means of the 
following formulas: 
 
    t td C u , (2) 

      *t t t Q D d Q , (3) 

 

where  * tQ  is the perfectly clamped generalized stress vector. 

     In the following, the interest is focused only to the case of undulatory 
dynamic effect. As a consequence it is usually to modify eqn (1) by means of the 
so-called static condensation [23]. 
     As usual in seismic engineering a ground motion sample gu  can be generated 

as a superposition of n  single-frequency wave components of the spectrum i : 

 

 
       

1

2
n

g i i i
i

u t E t S cos t   


   
 

(4) 

 
where  E t is an envelope shape function aimed at modeling the evolutive 

character of the seismic wave,  iS   is the one-sided power spectral density 

function (PSD), c n   is the sample frequency (being c  the cut-off 

frequency), and i  is a random phase angle uniformly distributed in 0 2 .  

In particular, as shape function, the Iwan-Hou model is here adopted: 
 

 

     
m

mE t exp m t exp t
m

 
     
     

(5) 
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where m  and   are suitable positive parameters, while as PSD it’s used the 

well-known Kanai-Tajimi filter model: 
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

 
 

(6) 

 
where g , g are parameters related to the site soil characteristics and WS is the 

power spectral density of the white noise process. 

3 Proposed optimal design problem formulation 

Let us consider an elastic perfectly plastic frame structure as above described 
and, according to the assumed loading model, let it be subjected to fixed 
mechanical loads and to seismic loads. The optimal design problem that we want 
to formulate is a minimum volume one, so that as design variables some 
appropriate measures of the beam element cross sections are chosen. Let the 

typical thν  beam element cross section geometry be fully described by the r  

components of the vector  1 2ν bν , ,...,nh  so that 1 2 bν n, , ..., , ...,   h h h h h      

represents the bn r  supervector collecting all the design variables. The 

structure is required to remain purely elastic when no seismic actions occur and 
to exhibit an elastic shakedown behaviour for the combination of fixed and 

seismic loads. For the typical thk  seismic load history the minimum volume 
design problem formulation can be written as follows: 
 

  0

min
k

k
, , ,

V
h u u ρ

,
 

(7a) 

subjected to: 

 min max h h h , (7b) 

  h h 0T , (7c) 

 0 0
Ku F , (7d) 

 0 0 0
 Q DCu Q , (7e) 

 
       k k k gkt t t u t   M u Βu Ku Mτ   ,

 
(7f) 

 
   sk kt tQ DCu ,

 

(7g) 

 
0 0pP NG Q , (7h) 

 
 

0
maxsk p sk

t T
t

 
 P NG Q , (7i)

 
 0

E   φ P R 0 ,
 

(7j)
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 0
S
k sk    φ P P ρ R 0 ,

 
(7k)

 
 Aρ 0 . (7ℓ) 

 

     In eqns (7b, c) h  is the design variable vector, T  is the technological 

constraint matrix and h  represents a suitably chosen technological vector. In 
eqns (7d–g) 0u  and 0Q  are the purely elastic response to the assigned full fixed 

loads in terms of frame node displacements and generalized stresses evaluated at 

the extremes of the beam elements, respectively, while  k tu  and  sk tQ  are 

the analogous purely elastic response but to the thk  seismic load history. In eqns 
(7h, i) 0P  is the required plastic capacity vector related to the fixed loads and 

skP  is the analogous required plastic capacity but related to the thk  seismic load 

history, being N  the matrix of the unit external normals to the elastic domain 

whose boundary is assumed as constituted by a discrete number of sides and pG  

an appropriate equilibrium matrix which applied to element nodal generalized 
stresses provides the generalized stresses acting upon the plastic nodes of the 

elements. Furthermore, in eqns (7j-ℓ) Eφ  and S
kφ  are the plastic potential 

vectors related to the purely elastic limit (apex E) and to the elastic shakedown 
limit (apex S), respectively, ρ  is the self-equilibrated stress vector satisfying the 

equilibrium conditions expressed by equation (7ℓ), with A  equilibrium matrix. 
Finally, R is the relevant plastic resistance vector. 
     According to the approach previously described, the optimal search problem 
(7) has to be solved for each generated time history of ground acceleration. 
Subsequently, the cumulative distribution function of the obtained volumes is 
obtained and the value with probability 1 is assigned as corresponding optimal 
value optV  for the volume. Once deduced this optimal value, the optimal 

structure design can be founded as the one of maximum volume optV  and such 

that the material distribution ensures the minimum of the strain energy. In order 
to formulate this latter problem, according to the unrestricted shakedown theory, 
the structure is thought as subjected to a combination of the assigned fixed loads 
and of any seismic load history within a suitably defined seismic load domain. 
The seismic load domain is characterized by a finite number (m) of assigned 
dynamic basic load histories identified as the ones related to volume values 
appertaining to a suitably chosen interval of the volume cumulative probability 
function where the upper bound is a selected per cent of the optimal volume. 
Therefore the minimum strain energy optimal design can be formulated as 
follows: 
 

  
   

0 1 0

min
i

Tm

i i
, , , i

ˆ ˆˆt t dt

 

h u u ρ
Q ΦQ


 (8a) 
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subjected to: 
 optV V , (8b) 

 min max h h h , (8c) 

  h h 0T , (8d) 

 0 0
Ku F , (8e) 

 0 0 0
 Q DCu Q , (8f) 

 
       i i i git t t u t   M u Βu K u Mτ   ,  1 2i , , ,m   (8g) 

 
   si it tQ DCu ,  1 2i , , ,m   (8h) 

 0 0p
ˆ Q G Q ,  1 2i , , ,m   (8i) 

    si p si
ˆ t tQ G Q ,  1 2i , , ,m   (8j) 

    0i si
ˆ ˆ ˆt t Q Q Q ,  1 2i , , ,m   (8k) 

 
0 0

ˆP NQ , (8ℓ) 

 
 

0
maxsi si

t T

ˆ t
 

 P NQ ,  1 2i , , ,m   (8m) 

 0
E   φ P R 0 , (8n)

 

 0
S
i si    φ P P ρ R 0 ,  1 2i , , ,m   (8o)

 
 Aρ 0 . (8p) 

 

     In problem (8), besides the already known symbols, 0Q̂  are the generalized 

stresses evaluated at the plastic nodes of the elements related to the fixed loads, 

 si
ˆ tQ  are the generalized stresses evaluated at the plastic nodes of the elements 

related to the thi  seismic basic load condition and  i
ˆ tQ  are the total generalized 

stresses evaluated at the plastic nodes of the elements related to the combination 

of fixed loads and thi  seismic basic load condition. The total strain energy is 

evaluated in correspondence of the plastic nodes of the elements being Φ̂  the 
relevant flexibility matrix. 

4 Applications 

The studied frame is constituted by a two floors and two spans structure as 
plotted in Fig. 3a). All the beam elements have square box cross section with 
edge 200 mma   and constant thickness h  variable between min 4 mmh   and 

max 40 mmh  (Fig. 3b)). Furthermore, 1 600 cmL  , 2 400 cmL  , 500 cm,H   

Young modulus 221MN cmE   and yield stress 223 5 kN cmy .   have been 

assumed. 
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a)        b)  
 

Figure 3: The plane frame structure: a) geometry and load condition; b) square 
box cross sections of the elements.  

     Two rigid perfectly plastic hinges are located at the extremes of all the 
elements, considered to be purely elastic, and an additional hinge is located in 
the middle point of the longer beams. The interaction between bending moment 
M and axial force N has been taken into account. In Fig. 4 the dimensionless 
rigid plastic domain of the typical plastic hinge is plotted in the plane ( yN N ,

yM M ), being yN  and yM  the yield generalized stresses corresponding to N  

and M , respectively.  

 

 

Figure 4: Dimensionless rigid plastic domain of the typical plastic hinge. 

     The structure beams are all subjected to the same fixed uniformly distributed 
vertical load, 0 30 kN / m.q   Referring to the dynamic loads, we assume that the 

seismic masses are located at all the structure nodes; due to the described 
gravitational load 0q  they are equal at each floor and it results: 

2
1 7 34 kN s mm .  , 2

2 12 23 kN s mm .  ,  2
3 4 90 kN s mm . .   The values 

a

h
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assigned to the seismic masses are computed considering that during the 
earthquake the gravitational loads do not act all simultaneously on the structure, 

so that it is possible to evaluate  00 8i im . q L g   , with g  the acceleration of 

gravity, 1 2 3i , ,  and iL  relevant influence beam length. At the same manner, 

the generalized stresses to combine with the seismic response are deduced by a 
suitably reduction of 0q . 

     The solution to problem (7) has been obtained for 1 2 1000k , , ,   utilizing a 
harmony search algorithm and the related obtained volumes allowed us to 
identify the relevant volume cumulative distribution function, plotted in Fig. 5.  

 

 

Figure 5: Volume cumulative distribution function of the plane frame volumes. 

     The volume with probability 1 is 3
opt 0 855 mV . .  For this optimal volume the 

thickness distribution reported in Table 1 is associated. 

Table 1:  Thicknesses related to the optimal volume 3
opt 0 855 mV . .  

El. 1 2 3 4 5 6 7 8 9 10 
h 28.9 39.5 33.9 10.1 25.6 14.0 27.1 4.0 17.8 14.8 

 
     In order to perform the second optimization problem (8) a suitable seismic 
load domain has been defined. In particular, five seismic acceleration histories 
have been considered as basic conditions: the one related to the value opt0 95. V  

and the immediately preceding four related to volume values not greater than 

opt0 95. V .  The minimum strain energy optimal shakedown design problem, 

according to the unrestricted dynamic shakedown approach, solved by means of 
a suitable harmony search algorithm, provides a thickness distribution as 
reported in Table 2. 
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Table 2:  Thicknesses related to the final optimal design. 

El. 1 2 3 4 5 6 7 8 9 10 
h 20.7 29.4 29.3 17.3 24.7 6.9 33.6 31.2 33.2 17.8 

 
     As it is possible to observe, a consistent redistribution of material is obtained 
and, in the special examined case, the thickness in the beams strongly increases. 
On the other side, the required behaviour for the structure is an elastic 
shakedown one and, as a consequence, a brittle collapse mechanism of the frame 
is not expected. 

5 Conclusions 

The present paper has been devoted to the proposing of a new probabilistic 
approach to the optimal design of elastic perfectly plastic structures subjected to 
a combination of fixed and seismic loads. In particular, reference has been made 
to steel frames and the optimal design problem has been formulated as the search 
for the minimum volume of the structure required to purely elastically respond to 
the fixed loads and capable to eventually shakedown for the combination of 
fixed and seismic loads. The novelty of the proposal is related to the probabilistic 
approach which characterizes the procedure. Actually, being random in nature 
the seismic load, the optimal volume is defined as that value corresponding to 
the probability 1 deduced by the related volume cumulative distribution function, 
and the final design is reached solving two subsequent optimal design problems. 
The first one is a minimum volume one and it is solved for a suitably defined 
large number of seismic load history generated starting from an assigned power 
spectral density function by means of the Monte Carlo approach. The second one 
is a minimum strain energy one for the structure with a volume not greater than 
the above defined optimal one. Two different computational algorithms have 
been utilized for the solution of the relevant optimization problems. For both 
problems a suitable modified harmony search algorithm has been utilized. 
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