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Abstract

We shall first briefly review the FETI based domain decomposition methodology
adapted to the solution of multibody contact problems in 3D with Coulomb
friction. These problems play a role of the state problem in contact shape
optimization problems with Coulomb friction. We use a modification of FETI that
we call Total FETI, which imposes not only the compatibility of a solution across
the subdomain interfaces, but also the prescribed displacements. For solving a state
problem we use the method of successive approximations. Each iterative step of
the method requires us to solve the contact problem with Tresca friction.

The discretized problem with Coulomb friction has a unique solution for small
coefficients of friction. The uniqueness of the equilibria for fixed controls enables
us to apply the so-called implicit programming approach. Its main idea consists in
minimization of a nonsmooth composite function generated by the objective and
the control-state mapping. The implicit programming approach combined with the
differential calculus of Clarke was used for a discretized problem of 2D shape
optimization. There is no possibility to extend the same approach to the 3D case.
The main problem is the nonpolyhedral character of the second-order cone, arising
in the 3D model. To get subgradient information needed in the used numerical
method we use the differential calculus of Mordukhovich. Application of the
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Total FETI method to the solution of the state problem and sensitivity analysis
allows massively parallel solution of these problems and stable identification of
rigid body modes which are a priori known. The effectiveness of our approach is
demonstrated by numerical experiments.
Keywords: total FETI, contact problems, Coulomb friction, shape optimization,
nonsmooth optimization.

1 Introduction

Contact shape optimization is a special branch of structural optimization whose
goal is to find shapes of deformable bodies which are in a mutual contact. A
specific feature of contact shape optimization is its nonsmooth character due to
the fact that the respective state mapping is given by various types of variational
inequalities. We must use some special minimization algorithm of nonsmooth
optimization for this kind of problem.

The contact problems are in the heart of contact shape optimization applications
in mechanical engineering. Solving large multibody contact problems of linear
elastostatics is complicated by the inequality boundary conditions, which make
them strongly non-linear, and, if the system of bodies includes “floating” bodies,
by the positive semi-definite stiffness matrices resulting from the discretization
of such bodies. Observing that the classical Dirichlet and Neumann boundary
conditions are known only after the solution has been found, it is natural to assume
the solution of contact problems to be more costly than the solution of a related
linear problem with the classical boundary conditions.

2 State problem: 3D contact problem with Coulomb friction

2.1 Primal formulation

To apply the TFETI domain decomposition, we tear each body from the part of
the boundary with the Dirichlet boundary condition, decompose each body into
subdomains, assign each subdomain a unique number, and introduce new “gluing”
conditions on the artificial intersubdomain boundaries and on the boundaries
with imposed Dirichlet condition. The gluing conditions enforce continuity of
the displacements and of their normal derivatives across the intersubdomain
boundaries and prescribed displacement on the Dirichlet boundaries.

In the following, we use the symbols E and N to distinguish the parts
corresponding to the equalities and inequalities, respectively. The finite element

discretization of Ω = Ω
1 ∪ ... ∪ Ω

s
with a suitable numbering of nodes results in

the problem

min
u

Jh(u) subject to BNu ≤ cN and BEu = cE , (1)

where

Jh(u) = f (u) + jh(u), f (u) =
1
2

uT Ku − fT u,
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Figure 1: TFETI decomposition with subdomain renumbering.

jh denotes the discretized dissipative term, K = diag(K1, ... , Ks) denotes a
symmetric positive semidefinite block-diagonal matrix of the order n, BN denotes
an mC × n full rank matrix, BE denotes an mE × n full rank matrix, f ∈ R

n,
cN ∈ R

mC , and cE ∈ R
mE . After applying a numerical integration to a term with

friction representing the Tresca friction law, we get

jh(u) =
mc∑
i=1

Ψi‖Tiu‖, (2)

where Ψi is the slip bound associated with Ti . Using the standard procedure to
modify the non-differentiable term jh, we get

jh(u) =
mc∑
i=1

Ψi‖Tiu‖ =
mc∑
i=1

max
‖τi‖≤Ψi

τT
i Tiu, (3)

where τi ∈ R
2 can be considered as Lagrange multipliers. We assume that BN ,

BE , and T are the full rank matrices.

2.2 Dual formulation

The problem (1) is not suitable for numerical solution. The reasons are that the
stiffness matrix K is typically ill-conditioned and singular, and the feasible set is
in general so complex that projections into it can hardly be effectively computed.
Under these circumstances, it would be very difficult to achieve fast identification
of the active set at the solution and fast solution of the auxiliary problems.The
complications mentioned above may be essentially reduced by applying the duality
theory of convex programming . In the dual formulation of problem (1), we use
three types of Lagrange multipliers, namely λN ∈ R

mC associated with the non-
interpenetration condition, λE ∈ R

mE associated with the “gluing” and prescribed
displacements, and

τ = [τ T
1 , τ T

2 , ... , τ T
mC

]T ∈ R
2mC
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which regularizes the non-differentiability. The Lagrangian associated with
problem (1) reads

L(u, λN , λE , τ ) = f (u) + τT Tu + λT
N (BNu − cN ) + λT

E (BEu − cE ). (4)

Using the convexity of the cost function and constraints, we can use the classical
duality theory to reformulate problem (1) to get

min
u

sup
λE ∈R

mE , λN≥o
‖τi‖≤Ψi , i=1,...,mC

L(u, λN , λE , τ ) = max
λE∈R

mE , λN≥o
‖τi‖≤Ψi , i=1,...,mC

min
u

L(u, λN , λE , τ ).

To simplify the notation, we denote

λ =




λE

λN

τ


 , B =




BE

BN

T


 , c =




cE

cN

o


 ,

and

Λ(Ψ) = {(λT
E , λT

N , τT )T ∈ R
mE +mC +2mC : λN ≥ o, ‖τi‖ ≤ Ψi , i = 1, ... , mC}

so that we can write the Lagrangian briefly as

L(u, λ) =
1
2

uT Ku − fT u + λT (Bu − c)

and problem (1) is equivalent to the saddle point problem

L(û, λ̂) = max
λ∈Λ(Ψ)

min
u

L(u, λ). (5)

We assume that B is a full rank matrix. For fixed λ, the Lagrange function L(·, λ)
is convex in the first variable and the minimizer u of L(·, λ) satisfies

Ku − f + BT λ = o. (6)

Equation (6) has a solution if and only if

f − BT λ ∈ ImK, (7)

which can be expressed more conveniently by means of a matrix R ∈ R
n×6s whose

columns span the null space of K as

RT (f − BT λ) = o. (8)

Let us note that the action of a generalized inverse may be evaluated at the cost
comparable with that of Cholesky’s decomposition applied to the regularized K. It
may be verified directly that if u solves (6), then there is a vector α ∈ R

6s such
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that

u = K+(f − BT λ) + Rα. (9)

After substituting expression (9) into problem (5), changing the signs, and
omitting the constant term, we get that λ solves the minimization problem

min Θ(λ) s.t. λ ∈ Λ(Ψ) and RT (f − BT λ) = o, (10)

where

Θ(λ) =
1
2

λT BK+BT λ − λT (BK+f − c). (11)

Once the solution λ̂ of (10) is known, the solution û of (1) may be evaluated by
(9) with

α = (RT B̃T B̃R)−1RT B̃T (c̃ − B̃K+(f − BT λ̂)),

where the matrix B̃ and the vector c̃ are formed by the rows of B and c
corresponding to all equality constraints and all free inequality constraints.

2.2.1 Coulomb’s friction
Here we report approach for solving of the contact problem with Coulomb friction
(with the coefficient of friction F ). The Tresca friction can be used to introduce a
mapping

Ξ : Λ̃N(Ψ) �→ Λ̃N (Ψ), Ξ(Ψ) = FλN

with

Λ̃N(Ψ) = {FλN : λ ∈ Λ̃(Ψ)},

whose fixed point is a solution to the problem with the Coulomb friction. Here Ψ
is a vector with the entries Ψi introduced in (2). It is well-known that the sequence
{Fλk

N}, Fλk+1
N = Ξ(Fλk

N) with initial Fλ0
N ∈ Λ̃N(Ψ), converges to the fixed-

point FλN if Ξ is contractive in Λ̃N(Ψ). In addition, such a fixed-point is unique.
This property holds provided that the coefficient of friction is small enough.

For more details see [4] and [8].

3 Shape optimization

So far, the shape of contact boundary has been fixed. Next we will look at α as a
control variable parameterizing our state problem. We denote by S the control-to-
state mapping which assigns α ∈ R

d the solutions (u,λ) of the contact problem
with Coulomb friction. We know that S(α) is nonempty for all α ∈ U (U is set of
admissible design variables) and a singleton if coefficient of friction F ∈ (0,F0).
For details see [2]. Let J : Gr S �−→ R be an objective function.
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The discrete optimal shape design problem reads as follows:

Find z∗ := (α∗, u∗,λ∗) ∈ Gr S such that

J (z∗) ≤ J (z) ∀z ∈ Gr S.

}
(P)

If F ∈ (0,F0), then S is single-valued and (P) takes the form

Find α∗ ∈ U such that

Θ(α∗) ≤ Θ(α) ∀α ∈ U ,

}
(P̃)

where Θ(α) : = J (α, S(α)).
We use Matlab implementation of bundle trust method (see [7]) for the solution

of shape optimization problem. This method is very robust and proper for the
minimization of non-differentiable (nonsmooth) functions. This iterative method
needs in every step value of the objective function and one arbitrary Clarke
subgradient (for more details see [3]), i.e. we must be able for each admissible α
to find a solution of the state problem (u,λ) = S(α) and to compute one arbitrary
Clarke subgradient. This is the goal of the following section.

4 Sensitivity analysis

The control-state mapping S(α) can be transformed into the following generalized
equation (GE):

0 = Kf (α)u − f f (α) − B(α)T
f λ ... free nodes,

0 ∈ Kct (α)u − f ct (α) − B(α)T
ctλ + Q̃(uct ,λc) ... contact nodes,

0 = Kcν(α)ut − f cν (α) − B(α)T
cνλ ... contact nodes,

0 ∈ c(α) − B(α)cu + NR
p
+
(λc) ... contact nodes,

where t denotes the tangential components, ν denotes the normal components,
c(α) denotes the shape of contact boundary of the optimized body controlled by
design variableα and

Q̃(ut ,λc) := ∂ut j(ut ,λc), j(ut ,λc) := F
p∑

i=1

λi
c ||ui

t ||, NR
p
+

is standard normal cone.
This generalized equation can be written as:

0 ∈ F (α)y − l(α) + Q(y),
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where

y := (u,λ)T ,

F (α) :=

[
K −B

−B 0

]
,

l(α) := (f (α),−c(α))T ,

Q(y) :=
(

0, Q̃(ut ,λc), 0, N
R

p
+
(λc)

)T
.

We are searching for one (arbitrary) Clarke subgradient:

∂Θ(α) 	 ξ = ∇1J (α,S(α)) + {CT∇2J (α,S(α)) : C ∈ ∂S(α)}.

Because it holds
∀y∗ : D∗S(α)(y∗) �= ∅

and
conv (D∗S(α)) (y∗) = {CT y∗ : C ∈ ∂S(α)},

it suffices to compute just one element from the set D∗S(α)(∇2J (α,S(α))). We
can find the elements from the limiting (Mordukhovich) coderivative

D∗S(α)(y∗) := {x∗ ∈ R
d : (x∗,−y∗) ∈ N Gr S(α)}

on the basis of the following theorem.
Theorem Consider the reference pair (α, y), with α ∈ Uad , y = S(α). Then

∀ y∗ ∈ R
m

D∗S(α)(y∗) ⊂ (∇1(F (α)y − l(α)))TV ,

provided V is the set of solutions v to the (limiting) adjoint generalized equation

0 ∈ y∗ + (F (α))T v + D∗Q(y,−F (α)y + l(α))(v).

For more details see [2].
We can use Total FETI method for the searching of solution to the limiting

adjoint generalized equation. Our approach is based on [5].

5 Numerical results

Described methods were implemented and the following experiment was solved
in MatSol library [6] developed in Matlab environment.

Two chain links (see Figure 2) were uniformly carved into 48×8×20 = 7680
bricks. The finite element discretization was constructed by using hexahedron
elements. The total number of nodal displacements was 66528. The total number
of design variables (control points of surface of the chain link) was 28. Figure 3
presents meaning of the control points. These two chain links were decomposed in
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Figure 2: Two chain links.

Figure 3: Design variables for controlling of shape of chain link.

Figure 4: Domain decomposition of chain links.
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Figure 5: The distribution of the von Misses stresses for the initial shape.

Figure 6: The optimal shape of the contact boundary.

our experiment into 32 bodies. See Figure 4. We try to find a shape of the contact
surface of the chain link for which the total potential energy functional is minimal.
The corresponding problem (P̃) can be formulated as

minimize
1
2

uT Ku − uT f

subject to α ∈ U .

Figure 5 shows the distribution of the von Misses stresses for the initial shape,
given by the constant vector α0 = [0, ... , 0]. The objective value for the initial
design was equal to Θ(α0) = −3.387422 · 105. The relative stopping criterion
for the code Bundle Trust was chosen as ε = 1 · 10−4. This required precision was
reached after 2 iterations. Figure 6 presents the optimal solution, i.e., the optimal
shape of the contact boundary, while Figure 7 shows the von Misses stresses. The
optimal value of the objective function was Θopt = −3.807087 · 105.
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Figure 7: The distribution of the von Misses stresses for the optimized shape.
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