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Abstract

This paper deals with the solution of the discretized quasistatic 3D Signorini
problems with local Coulomb friction. After a time discretization we obtain
a system of static contact problems with Coulomb friction. Each of these problems
is decomposed by the TFETI domain decomposition method used in auxiliary
contact problems with Tresca friction. The algebraic formulation of these problems
in 3D leads to the quadratic programing with equality constraints together with
box and separable quadratic constraints. For the solution we used the scalable
algorithm SMALSE developed at our department. The efficiency of the method
is demonstrated by results of numerical experiments with parallel solution of 3D
contact problems of elasticity.

1 Introduction

Contact problems represent a branch of mechanics of solids which analyzes the
behavior of loaded, deformable bodies being in a mutual contact. If the system
of bodies includes “floating” bodies, the resulting stiffness matrices from the
discretization of such bodies are positive semi-definite. Moreover the occurrence
of non-penetration and friction conditions implies the highly non-linear behavior
of resulting problems. Both this phenomena depend on time so as the applied
forces. If however applied forces vary only slowly in time, inertia of the system

based    
problems of mechanics
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can be neglected and one can use a quasistatic approximation (Eck et al. [1]). This
typically arises in geomechanics (modelling of a movement of tectonic plates,
prediction of earthquakes).

Using finite–difference approximation of the time derivative we arrive at a
sequence of static contact problems with Coulomb friction, whose solutions are
defined by using a fixed point approach. Each iterative step is represented by
an auxiliary contact problem with a given slip bound (Tresca model of friction).
Since its formulation is given by a variational inequality of the second kind, after
discretization we obtain a convex non-smooth constrained minimization problem
for a discrete total potential energy function. To increase the efficiency of the
quadratic part of the minimized problem we used the TFETI method, a variant
(see Dostál et al. [2] and [3]) of FETI domain decomposition methods framework

et al. [4]). Introducing the additional Lagrange multipliers one can release
the non-penetration conditions and transform the frictional into a smooth one.
Eliminating the displacement field we arrive at a quadratic minimization problem
with box and separated quadratic inequality constraints.

For solving of such minimization problem we use the SMALSE algorithm
(Dostál and Kozubek [5] and Dostál and Kučera [6]) with an error bound in
terms of bounds on the spectrum of the Hessian to the quadratic cost function,
independent of the conditioning of the constraints. Moreover if the problem has
sparse enough representation of the Hessian, it simply follows that the cost of the
solution is proportional to the number of unknowns.

This proceeding extends the results of Haslinger et al. [7] and [8] from unilateral
2D and 3D problems to multibody contact case.

2 Formulation of the quasistacic 3D contact problem with
Coulomb friction

At first we briefly introduce the multibody quasistatic problem with Coulomb
friction. The nΩ isotropic elastic bodies are represented by the domains Ωp ∈ R

3,
with a sufficiently smooth boundary Γp, p = 1, ... , nΩ. Suppose that each Γp

consists of three disjoint parts Γp
U , Γp

F and Γp
C and consider zero displacements

on Γp
U and given forces F p. The part Γp

C denotes the part of Γp that may get into
contact with some other body in a time interval [0, T0] and therefore the non–
penetration and Coulomb friction conditions have to be prescribed. In particular,
we denote by Γpq

C the part of Γp
C that can be, in the solution, in contact with the

body Ωq . For convenience, we introduce the index set of contact interfaces

IC =
{

(p, q), p, q = 1, ... , s : p < q and meas Γpq
C > 0

}
.

One can read more about the formulation for unilateral contact in [8, 9]. Our
notation of the multibody case is similar to the prepared article [3] on transient
problems.

By the weak formulation of the quasistatic contact problem with local Coulomb
law of friction we mean the following problem formulated in terms of the

(Farhat
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displacement vector u and the normal contact stress λN :

Find u ∈ W 1,2(0, T0,V), λN ∈ W 1,2(0, T0,M) such that

u ∈ K for a.a. t ∈ [0, T0], u(0) = u0 in Ω

a(u, v − u̇) + j(λN , v ) − j(λN , u̇) ≥ L(v − u̇)+

+
∑

(p,q)∈IC

〈λpq
N , [vpq

N − u̇pq
N ]〉 ∀v ∈ V and a.a. t ∈ [0, T0]

〈λN , zN − uN〉 ≥ 0 ∀z ∈ K and a.a. t ∈ [0, T0] ,




(1)

where [ ] is the jump of the displacement across Γpq
C and 〈 〉 is the appropriate

duality pairing.

a(u, v ) :=
nΩ∑
p=1

∫
Ωp

cp
ijklεij (up)εkl(vp) dΩ , j(λN , v ) := −

∑
(p,q)∈IC

〈Fλpq
N , ‖[vpq

T ]‖〉

L(v ) :=
nΩ∑
p=1

∫
Ωp

F p
i vp

i dΩ +
∫

Γp

Pp
i vp

i dΓ

where λN is equal to the normal contact stress on Γc .
After discretization of time (nts timesteps) and space and substitution of

the difference instead of time derivation will be the quasistatic problem (1)
approximated by the sequence of static contact problems with Coulomb friction.
Only the small change will appear in the nonsmooth friction term formulation
which is in each timestep corrected from the previous timestep solution. For
details see Haslinger et al. [8]. The variational formulation of Coulomb friction
is the implicit variational inequality due to the occurrence of the term λN in the
nonsmooth part of it. To deal with this we used the alternative formulation based on
the fixed point approach, where the sequence of auxiliary Tresca friction problems
with previously mentioned correction is solved. It turned out to be efficient from
the numerical point of view.

The discretized Tresca friction problem is described as a solution u of the
problem

For given g ∈ R
nN− find u ∈ K such that

J(u) ≤ J(v) ∀v ∈ K,

where J(v) = 1
2v�Kv − v�f +

∑nN
i=1 −Fgi‖Ti (v − z)‖R2 ,


 (Qi

A)

where K and f is the stiffness matrix and right hand side, respectively. The matrices
N and T describe mappings from u to [uN ], [uT ], respectively. The vector g is the
given slip bound,

K = {v ∈ R
np | vN := Nv ≤ cN}

is the cone of admissible displacements and z is the correction from the
previous timestep solution. The gap between contact interfaces in the reference
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configuration we denote by cN . The numbers np, nN denote the displacement
degrees of freedom count, the dual dof’s (from the discretization of the duality
pairing 〈 〉), respectively. Each of this matrices and vectors has a block structure
according to the bodies of the multibody contact problem.

3 Domain decomposition and dual formulation of the auxiliary
Tresca friction problem

Let mark all symbols from the previous section with g as “global”. At fig. 1 one can
see the sketch of the domain decomposition of ith body Ωg

i into subdomains Ωij .
Let denote the space of the discretized displacements as V g and the decomposed
space (broken space) by V . Dealing with the decomposed displacement u one have
to enforce the continuity across the teared interface. This can be achieved by the
“gluing” matrix BG and the equality constraint imposed on u and in the same way
can be handled the Dirichlet boundary condition

ug ∈ V g ⇔ (u ∈ V ) ∧ (BGu = 0)

ug ∈ K g ⇔ (u ∈ V ) ∧ (BGu = 0) ∧ (BDu = 0) ⇔ (u ∈ V ) ∧ (BEu = 0),

where the matrix BE is formed from the blocks BG and BD . Substituting this into
(Qi

A) we obtain

For given g ∈ R
nN− find u ∈ V such that

J(u) ≤ J(v) ∀v ∈ K, subject to Bu = Bv = 0

where J(v) = 1
2v�Kv − v�f +

∑nN
i=1 −Fgi‖Ti (v − z)‖R2 ,


 (2)

Let us mention that all the vectors and matrices have the block structure
according to subdomains and so the computation with them is much more
convenient. All the blocks in the stiffness matrix are positive semidefinite with
the kernel of the dimension 6 in the case of 3D problems. Using the standard

Figure 1: Original (left) and decomposed (right) domain.
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procedure to modify the non-differentiable term (see Dostál et al. [10]), we get

Fgi‖Ti(v − z)‖ = max
‖λTi‖R2≤Fgi

λ�
TiTi (v − z) .

Now, we can employ the additional Lagrange multipliers; λE to enforce the
equality condition, λN to enforce the non-penetration condition and λT that
regularizes the non-differentiability. Finally we obtain the saddle point problem

Find (u, λN , λT , λE ) ∈ R
np × Λ(g) such that

L(u, λN , λT , λE ) = sup
λN≥0

‖λTi‖R2≤Fgi

λE∈R
nE

inf
v∈R

np
L(v, µN , µT , µE ) ,




(3)

where

L(v, µN , µT , µE ) =
1
2

v�Kv − v�f+

+ µ�
T (Tv − Tz) + µ�

N (Nv − cN ) + µ�
E (BEv − cE )

Λ(g) = R
nN
+ × {µT ∈ R

2nN | ‖λTi‖R2 ≤ Fgi} × R
nE .

After small change of notation to group the indices N, T , E together, swapping
the supremum and infimum, eliminating of displacement using the pseudoinverse
matrix K

+ and the kernel matrix R (see all this steps in Dostál et al. [2]) we obtain
the dual formulation

Find λ ∈ Λeq(g) such that S(λ) ≤ S(µ) ∀µ ∈ Λeq(g) , (4)

where

S(µ) =
1
2

λ�
F︷ ︸︸ ︷

BK†B� λ − λ�
d︷ ︸︸ ︷

BK†f − c

Λeq(g) = {λ ∈ Λ(g)| R�B�︸ ︷︷ ︸
G

λ = R�f︸︷︷︸
e

}

4 Optimality

After homogenization of the equality constraint in (4) and returning back to the
same notation one can enhance the resulting problem by putting the projectors
from the homogenized equality constraints, which results in the problem

Find λ ∈ Λ�(g) such that S�(λ) ≤ S�(µ) ∀µ ∈ Λ�(g) , (5)

where

S�(µ) =
1
2

λ�(PFP + ρQ)λ − λ�Pd

Λ�(g) = {λ ∈ Λ(g)| Gλ = 0} , Q = G�(GG�)−1G , P = I − Q .
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A good choice of the regularization parameter is given by ρ = ‖PFP‖, as this is
the largest value for which

‖PFP‖ ≥ ‖PFP + ρQ‖ .

The classical estimates by Farhat et al. [4] of the extreme eigenvalues says that
if the decompositions and the discretizations are sufficiently regular, then there
exists constants C1 > 0 and C2 > 0 independent of the discretization parameter
h and the decomposition parameter H such that

C1
h
H

≤ λmin(PFP|ImP) and λmax(PFP|ImP) = ‖PFP‖ ≤ C2, (6)

where λmin and λmax denote the extremal eigenvalues of the corresponding
matrices.

For the solution of 5 we propose to use SMALSE (semi-monotonic
augmented Lagrangian method for separable and equality constraints) Dostál
and Kozubek [5]. SMALSE enforces the equality constraints by the Lagrange
multipliers generated in the outer loop, while the auxiliary inner quadratic
programming problems with separable inequality constraints but without equality
constraints are solved approximately in the inner loop by the MPGP algorithm
proposed by Dostál and Kozubek [5].

The unique feature of combination of SMALSE with MPGP for solving the
quadratic programming problems (5) that arise from the auxiliary Tresca friction
problems is the bound on the number of iterations whose cost is proportional to
the number of variables, so that it can return an approximate solution for the cost
proportional to the number of variables.

5 Numerical experiments

In this section we want to test the previously mentioned algorithms to show their
optimality.The algorithms were implemented into our MatSol software (Kozubek
et al. [11])  and tested on academic and real world problems.

5.1 Structured grid: Two cantilever beams example

We shall consider two elastic bodies represented by the bricks Ωi made of
a homogenous and isotropic material which are characterized by Young’s modulus
Ei and Poisson’s ratios σi , i = 1, ... , 2:

Ω1 = (0, 2) × (−0.05, 1.05) × (−1, 0), E1 = 30000 MPa, σ1 = 0.27

Ω2 = (
2
3

,
8
3

) × (0, 1) × (0.1, 1.1), E2 = 30000 MPa, σ2 = 0.35 .

The bodies are subjected by the surface tractions PiU · φa(t), PiL · φb(t) as is
depicted in fig. 2. The functions φa, φa (fig. 3) characterizes the history of the
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Figure 2: Geometry of cantilever beams.

Figure 3: Geometry of cantilever beams.

loading process. We used structured trilinear grid with varying discretizations.
The discretization and decomposition parameters were properly chosen to keep
the ratio H/h constant. The computation was done with the Coulomb friction
coefficient F = 0.5 and for 10 timesteps.

The resulting von Mises stress in timesteps 5 and 10 are depicted in figures 4
and 5. The characteristics of computation are summarized in table 1. We can see
that the number of matrix–vector multiplications and SMALSE inner iterations
increases with the increasing problem size. The number of inner iterations
increases due to the use of Coulomb friction boundary condition. In addition, if we
take into account the fact that the first approximately ten iterations of the SMALSE
algorithm (in each timestep) are inexpensive to Hessian multiplications then one
can see that the ratio of Hessian multiplication per inner iteration varies only a
little, as was predicted by the theory.
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Table 1: Numerical characteristics of 3D cantilever beams example.

Number of subdomains 32 108 256 500

Number of CPUs 20 20 20 20

Primal variables 127,775 431,244 1,022,208 1,996,500

Dual variables 23,763 89,283 222,462 446,916

Null space dimension 192 648 1536 3000

SMALSE-M iterations 123 125 136 147

Hessian multiplications 1834 2160 2522 3099

Solution time [s] 197 607 1813 4446

Total time [s] 302 1181 3586 9301

Figure 4: two beams, ts = 5. Figure 5: two beams, ts = 10.

5.2 Real world problem application: yielding clamp connection

To show that our approach is capable also to solve real world contact problems
we consider the analysis of the yielding clamp connection of steel arched supports
depicted in fig. 6. This type of construction is used to support the mining openings.
It is a typical multibody contact, where the yielding connection plays the role of
the mechanical protection against destruction, i.e., against the total deformation
of the supporting arches. We consider again the quasistatic Coulomb friction
problem contact with F = 0.5 and 10 timesteps. The problem was decomposed by
METIS into 150 subdomains and discretized by 520,833 and 102,724 primal and
dual variables, respectively. The total displacements for timesteps 6 and 10 are
depicted in fig. 6. The computation required 8278 matrix-vector multiplications.
The solution time was 2315 s and the total time 4293 s.
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Figure 6: Steel support, displacement for ts = 6 (left) and ts = 10 (right).
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