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Abstract 

The principles of continuum damage mechanics (CDM) are employed to solve 
the fatigue damage characteristics of elastomers. In so doing, both the damage 
strain energy release rate and the elastic energy, as a function of strain versions, 
of a damaged material rendered according to Ogden model, are put forward. 
Further, the damage evolution low is set up to express the fatigue lifespan in 
terms of the nominal strain amplitude subject to cyclic loading. Fatigue tests of a 
carbon rubber were performed to stipulate the fatigue life-dependence on the 
nominal stress amplitude, and to compare experimental data with the theoretical 
formula derived for the fatigue life. To get the stress-strain curve, uniaxial 
tension tests on a carbon-filled natural rubber were realized. For the said 
substance, material parameters were defined by fitting the experimental stress-
strain curve to Ogden constitutive simulation.  
Keywords: carbon rubber, dissipative mechanism, filled elastomers, fitting, 
hyperelasticity, state law, strain energy potential. 

1 Introduction 

Continuum Damage Mechanics introduces a scope to express the damage 
constitutive equations and to extend them to 3D, according to computations of 
construction. Some essential aspects of both general circumstances and 
numerical studies going with CDM are included in publications [1–4]. 
     The Lemaitre damage evolution law of a damage rate determined by plasticity 
adding, which is also improved by the elastic energy density, is able to solve the 
effects: ductile failure, fatigue, creep and creep-fatigue of metals or polymers  
[1, 6]. In the case of materials such as composites, concrete and filled elastomers, 
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no plasticity exists for other definite dissipative mechanisms arrived at, and the 
Lemaitre damage law is worthless.  
     The piece of research on these mechanisms shows a general form for the 
thermodynamical potential (Helmholtz specific free energy). It plans an 
extension of plasticity coupled with damage scope to more general constitutive 
simulations inclusive of internal sliding and friction.  
     An elastomer is a polymer with the property of elasticity. The term, derived 
from elastic polymer, is often used interchangeably with the term rubber, and is 
preferred when referring to vulcanizates. Each of the monomers that link to form 
the polymer is usually made of carbon, hydrogen, oxygen and/or silicon. 
Elastomers are amorphous polymers existing above their glass transition 
temperature, so that considerable segmental motion possible. At ambient 
temperature, rubbers are thus relatively soft (E ~ 3MPa) and deformable. Their 
primary uses are for seals, adhesives and molded flexible parts. 
     Elastomers are a failure and cyclic strain amplitudes much lower than the 
static failure strain; these characteristics in elastomers are the result of the 
damage initiation and accumulation occasioned by fatigue loading. When a 
cyclic load is applied on particle-reinforced elastomers, particle separation from 
the matrix and cracking in the matrix can occur after a certain number of loading 
cycles, causing the elastomers to damage at different areas. Damage at different 
areas can coalesce and form macroscopic cracks leading to the final rupture of 
elastomers. The extent of damage in materials can be dependent upon the loading 
cycles and the loading amplitudes. The continuum damage mechanics theory 
could be practical in the inquiry of the fatigue damage characteristics of 
elastomers.  
     Some fatigue damage events such as the nucleation and growth of initial 
defects (microvoids, microcracks and second phase inclusion) may permit the 
using CDM to study the fatigue behavior via the analysis of the damage 
evolution indicative of forming microcracks and voids likewise as heterogeneity 
microstructures segregation before macrocrack initiation.  
     The aim is to apply the continuum damage mechanics to evolve a theoretical 
model to define the fatigue service life under controlled strain amplitudes for 
elastomers. In the statement of a damage model for the fatigue characteristics of 
elastomers, a constitutive model is required. While the elastomers may exhibit 
time-dependent behavior, as a first order approximation most elastomeric 
materials can be considered to behave hyperelastically. The constitutive law of a 
hyperelastic material can be described in terms of a strain energy potential, 
which is a function of strain invariants. The strain energy potential is determined 
as the strain energy stored in the material per unit reference volume.  
     In conformity with [5], the CDM is applied to analyze the damage evolution 
and fatigue characteristics of elastomeric materials. Ogden simulation is used to 
express the strain energy potential by virtue of nominal deviatoric principal 
elongations and to build the nominal stress and strain relation for hyperelastic 
materials [8, 9]. A damage model is developed to establish the fatigue life 
formula for elastomeric materials. A carbon filled natural rubber material was 
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tested to obtain the relation between the nominal stress and the nominal strain, 
and also the fatigue life as a function of the nominal strain amplitude. 

2 General simulation of thermodynamics 

The concept for a unified damage model is to express the damage rate to the 
dissipative mechanism, frequently sliding and friction, and to take into account 
damage being determined by a cumulative quantity of the internal sliding. This 
applies apart from others materials to filled elastomers in that a dissipative effect 
exists owing to internal sliding of the macro-molecular chains and on the black 
carbon filler particles. 

2.1 Thermodynamic variables 

Characterize ν = [επ,a,q,D] being internal variables joined with A = [-σπ,x,Q,-Y]. 
The physical significance of these thermodynamic variables depends on the type 
of material and of the physical dissipative mechanisms. The strain επ due to 
internal sliding is an internal inelastic strain (equal to the plastic strain εp in 
plasticity) and Y is the strain energy release rate density. 

2.2 State and evolution laws 

The expression for the state potential accepting to couple damage and internal 
friction has the form 
 
          aεεε ,1 21 qwwDgwD s   (1) 

 
where w1 and w2 define the strain energy density and ws the stored energy density 
depending on the scalar variable q and the tensorial variable a. The function g(D) 
is really put as g(D) = 1 – D.  

     For the state laws we obtain 
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     They understandably define the effective stresses σ, σπ, such as the elasticity 
law expressed by virtue of strains and of effective stresses does not depend 
unambiguously on D (strain equivalence principle).  
     Consider the non-associated dissipative potential  
 
 Dx FFfF   (3) 

where  

- 0~  sQf  xσ  defines the reversibility domain, || . || is a 

norm in the stresses and σs is the reversibility limit. 
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damage parameters. It results in Lemaitre damage evolution for metals 
and to its generalization to other materials. 

 
     The evolution laws deduce from the dissipative potential via the normality 
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that will recover the accumulated plastic strain as dtp
t
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plasticity. 
     The generalized damage evolution law is got in the following form: 
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D = Dc  → mesocrack initiation 
 
which is in conformity with damage determined by the main dissipative 
mechanisms through π and where Dc is critical damage at mesocrack initiation. 
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3 Continuous damage and fatigue of elastomers 

Elastomers may be implemented being hyperelastic with internal friction coupled 
with damage. Internal viscosity is an additional dissipative mechanism. 

3.1 Hyperelasticity with internal friction coupled with damage 

In this case, the generalization of Lemaitre damage law to any dissipative event 
is suitable. It exactly requires to be expressed in terms of the finite strains. The 
strain E = ½ (C - 1) is the Green–Lagrange strain tensor, with the dilatation 
tensor C = FT. F and F being the transformation gradient. The associated stress 
is the second Piola–Kirchhoff stress tensor S. Simulating internal fraction of 
elastomers needs two internal variables. They are the internal inelastic strain Eπ 
(instead of επ for small strains) associated with the opposite of a stress denoted 
Sπ and the internal sliding variable a associated with residual micro-stress tensor 
x.  
     The state potential is rendered in the reference configuration,  
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with ρ0 as the density of the underformed material and where: 

- w1 is an hyperelastic energy density 
- for plainness w2 is the first term of Mooney–Rivlin development 

with inelastic strain Eπ yielding a non-constant derivative, 
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     In case of incompressible materials the stresses are gained being  
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with the internal pressure P due to incompressibility. The state laws stipulate the 

effective stresses S = S / (1 –D),  D 1/
~  SS , the residual internal stresses 

x and the energy density release rate Y = w1 + w2. The reversibility criterion is  

0
~

 sf  xS  and σs is the reversibility limit. The evolution laws are 

obtained from the normality rule with the definition for Fx and FD as formerly, 
the damage law still related by eq. (5) but with the cumulative measure of the 

internal sliding dt
t

 0

 E .  
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Figure 1: Fatigue curve of a filled SBR for λmy = 2.53 (taken from [3]). 

     Observe that with neither damage nor viscosity the model stands for the 
hysteresis and the stress softening of filled elastomers. 

3.2 Calculation of the fatigue curve 

The hyperelasticity model with internal friction coupled with damage permits to 
determine the number of cycles to rupture NR in fatigue of elastomers. A periodic 
elongation λ(t) is used (it is larger principal component of F) with constant 
amplitude Δλ and mean elongation λmy.  
     The computed fatigue curve Δλ x NR is demonstrated in fig. 1 for a filled 
Styrene Butadiene Rubber. The measured elongation at rupture in tension λR = 
7.2 is also indicated in the diagram.  

4 Ogden model for elastomeric materials 

In Ogden model for incompressible and isotropic elastomer materials, the strain 
energy potential is described as  
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where i ’s are the deviatoric principal elongations and i  = J-⅓λi, with λi’s being 

the principal elongations and J the Jacobian determinant of the deformation 
gradient; N is the number of terms in the series; and μi’s, αi’s, and Di’s are 
temperature-dependent material parameters. The shear modulus μ0 and bulk 
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modulus K0 for Ogden model at the small strain deformation state are expressed 
by  
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     In the uniaxial stress state, the principal elongations λi’s are symbolized by  
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where λU is the elongation in the loading direction, λ1 and λ2 are the principal 
elongations on the planes perpendicular to the loading direction.  
According to Ogden, the principle of virtual work can be implemented in the 
following form 
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     Let N = 1 in eqn (9); inserting eqn (11) into eqn (9) results in the strain energy 
potential for the uniaxial stress state that reads  
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where μ1 = μ0 = E0/2(1 + ν) ≈ E0/3 for an incompressible material, with E0 being 
Young’s modulus at the small strain deformation state. From eqs. (12) and (13), 
the nominal stress and strain relation under uniaxial tension may be written down 
being  
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where material parameters α1 and μ1 can be found out by fitting experimental 
nominal stress-strain curve in eqn (14). 
 

5 The continuum damage mechanics simulation in the 
uniaxial stress state 

The isotropic damage is supposed concerning the CDM theory, the effective 
nominal normal stress is expressed as UT  = TU / (1 –D) using the effective 

nominal stress interpretation via the damage variable D. In this way, the nominal 
stress–strain relation of a damaged material is the same in form as that of an 
undamaged material in eqn (14) which comes to be 
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     Under a cyclic loading condition, damage accumulates with the number of 
cycles and the damage evolution depends on the strain amplitude. The time rate 
change of damage variable D may be represented in terms of the evolution of D 
with aspect to the number of cycles. Based on this factor, the principal 
elongation amplitude ΔλU is used to replace λU, and, at that case, the fatigue 
damage evolution per cycle is related being  
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where ΔλU means the principal elongation amplitude. 
     Supposing that the damage variable D is zero at the one set of the cyclic 
loading, that is, D = 0 when N = 0, consequently the damage value at any cycle 
can be stipulated by integrating eqn (15), which yields  
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     As a result, the relation between the damage variable D and the number of 
cycles N is 
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     The condition directly after the fatigue rupture is D = Dc = 1. It should be 
noted that the stiffness of material is finite immediately before failure, and that is 
comes to be zero as would be hinted by D = Dc = 1. At the moment of failure, the 
number of cycles N = Nf and the fatigue life Nf  may be related by  
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     In addition, using ΔλU = 1 + ΔεU, where ΔεU is the nominal strain amplitude, 
the formula for fatigue life is rendered being a function of the nominal strain 
amplitude ΔεU,  
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Figure 2: Fatigue life Nf versus nominal strain amplitude Δε curve of the 

rubber material [5]. 
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     In eqn (20) μ1 and α1 are material parameters same at those in eqn (14) and 
defined by the experimental nominal stress-strain relation; s0 and S0 are material 
parameters determined by the experimental fatigue life as a function of the 
nominal strain amplitude. Fig. 2 shows the fatigue life as a function of the 
nominal strain amplitude. The symbols represent experimental data, and the solid 
line is the curve fitted by eqn (20). Eqn (20) for the carbon-filled natural rubber, 
is simplified into the form  
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6 Conclusion 

Being a function of the nominal strain amplitude for elastomeric materials, a 
formula for the fatigue life was presented. Ogden model was used to express the 
strain energy potential in terms of strain alterations and to build nominal stress 
and strain relation for elastomeric materials. The theory of continuum damage 
mechanics was applied to see into damage characteristics for elastomers. A 
damage model was evolved to derive the formula for the fatigue life in 
connection with continuum damage mechanics.  
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     Uniaxial tension experiments on a carbon-filled natural rubber were 
performed to set the nominal stress and strain curve. Material parameters were 
found out by fitting the experimental nominal stress-strain curve to Ogden 
constitutive model for the rubber material. Fatigue tests were also conducted 
under strain-controlled loading condition at room temperature to determine the 
fatigue life as a function of the nominal strain amplitude. The relation between 
fatigue life and the nominal strain amplitude, gained from the damage model, 
can satisfactorily characterize experimental data for a carbon-filled natural 
rubber. 
     Elasto-plasticity coupled with damage scope constructed chiefly for metal and 
polymers is extended to filled elastomers. The suggested simulation applies for 
static and likewise fatigue loadings. Expressed in the framework of 
thermodynamics and in 3D, it will take into account failures of construction 
subject to complex loadings to be calculated. The model brings in damage 
parameters S, s, and the critical damage Dc. 
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