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Abstract 

Architectured materials (such as foams, corrugated structures, trusses, hollow 
spheres) are used, alone or as core material in a sandwich structure, for flexural 
panels. The idea is to take advantage of the architecture to combine multiple 
functionalities (e.g. lightweight, stiffness, thermal insulation). Therefore it seems 
relevant to design the distribution of matter in order to obtain the desired 
performances. Multi-functional and conflicting specifications lead to non-trivial 
selection and/or optimization problems. It is hence proposed to use numerical 
shape optimization procedures into a “material by design” approach applied to 
periodically architectured flexural panels. 
     A finite element analysis on the unit cell is presented to compute the effective 
stiffness of each panel depending on its architecture. Then, shape optimization 
by the level-set method is made on the unit cell with regard to the effective 
stiffness and a volume constraint. Multiple start geometries and objective 
functions are tested. The four-point bending test, which usually characterizes 
flexural panels performance, is used as a reference for both homogenization and 
optimization.  
Keywords: shape optimization, level-set method, homogenization, flexural panel, 
sandwich structures, architectured materials. 

1 Introduction 

Specifications in automotive industries are more and more complex in the way 
that multi-functional performances (such as stiffness, thermal and acoustic 
insulation) are required while keeping the weight as low as possible. Composite 
and architectured materials often give efficient solutions. Recently, numerous 
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techniques have been developed for manufacturing lightweight structures like 
graded metal foams 0, hollow spheres 0 and trusses 0, corrugated structures, 
honeycombs and other cellular solids 0. In a “material by design” approach 0, 
finding the cellular architecture that combines in the most efficient way a given 
set of conflicting properties is the key issue. In this regard, shape optimization 
techniques can enlarge the degrees of freedom on the geometry. 
     The proposed example of using shape optimization techniques to design a 
cellular material is the following. It consists of optimizing the matter distribution 
of a periodically architectured panel to obtain the highest stiffness with respect to 
a given relative density. The stiffness of such flexural panels is usually 
characterized by the four-point bending stiffness that includes flexion and shear 
contributions. Therefore, the proposed optimization problem is multi-functional 
and deals with maximizing the flexural and the shear stiffness with a volume 
constraint. Since the optimized panel is wished periodic, the optimization 
domain is the unit cell and the periodicity could be seen as an additional 
constraint. 
     The considered architectured panels (fig. 1 and 2) are assumed to be periodic 
in the x-direction and invariant in the y-direction. Only the bending stiffness in 
the x-direction is studied. 
 

 

Figure 1: Generic periodically architectured panel. The xy-plane is the in-
plane of the panel. The xz-plane is the one of the 2D plain strain 
model since the geometry is invariant in the y-direction. 

 

 

Figure 2: Unit cell of a generic periodically architectured panel. 

     The two following sections present, respectively, the homogenization 
procedure used to estimate the performance of each geometry, and the 
optimization results that use the previous procedure at each step of the algorithm. 
     First, in Section 2, an homogenization method is described. It allows one to 
estimate the stiffness of any architectured panel, computing on the unit cell the 
effective flexion and shear contributions commonly used for flexural panels. 
This method is then validated comparing the four-point bending stiffness of few 
test architectures, on one side analytically calculated with effective stiffness 
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coefficients and, on the other side, numerically computed with a whole panel 
finite element simulation. 
     Finally, in Section 3, shape optimization by the level-set method is made on 
the unit cell to maximize the effective coefficients. Since this problem is multi-
objective, the choice of the objective function is central, then different functions 
such as linear combination, product of power or physically based function are 
discussed. 

2 Homogenization 

The stiffness of such considered panels is usually characterized by the four-point 
bending stiffness, which has an analytical expression in the homogeneous case 
function of the flexural and shear coefficients. These stiffness coefficients 
include both material properties, such as Young’s and shear modulus, and 
geometrical dimensions, such as moment of inertia and thickness. 
     In the proposed homogenization procedure, effective coefficients are 
numerically computed by an energy approach, so that the bending stiffness of the 
whole architectured panels can be estimated by the one of the effective 
homogeneous panel. 

2.1 Homogeneous panel 

The mechanical behaviour of a panel under four-point bending load, fig. 3, is 
usually characterized (see Ashby et al. [6]) by the bending stiffness ܴ defined 
as: 

ܨ  ൌ ܴ݀ (1)

where F  is the distributed applied force and d is the deflexion of the inner 
indenters. The distance between inner and outer indenters are denoted 
respectively s and l. 
 

 

Figure 3: Four-point bending test. 

     Considering the flexural behaviour in the x-direction, Allen [7] gives an 
analytical expression of this bending stiffness for an homogeneous panel as: 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 112, © 2010 WIT Press

High Performance Structures and Materials V  441



 
1

ܴ
ൌ
ሺ݈ െ ሻଶሺ݈ݏ  ሻݏ2

௫ܦ48

݈ െ ݏ
௫௭ܦ4

 (2)

where ܦ௫ is the flexural coefficient given by: 

௫ܦ  ൌ
ܧ
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݄ଷ

12
 (3)

and ܦ௫௭ is the shear coefficient given by: 

௫௭ܦ  ൌ (4) ݄ܩ

     The analytical expression of this bending stiffness can be compared to 
numerical results. With taking the invariance of the mechanical problem in the y-
direction into account, a 2D plain strain finite element simulation is done on an 
homogeneous panel, fig. 3. A loading force F is applied and the strain energy ܹכ 
is computed. Then, the stiffness is obtained through the following equation: 

 
1

ܴ
ൌ
כ2ܹ

ଶܨ
 (5)

     Figure 5 shows the agreement between the analytical model and the finite 
element simulation of the whole homogeneous panel (resp. black line and black 
circles). 

2.2 Effective stiffness coefficients calculations 

Let us present the way to compute the effective stiffness coefficients of any 
periodically architectured panel. Each coefficient, respectively for flexion and 
shear, is computed by a finite element simulation of the unit cell under the 
corresponding elementary loading. 

2.2.1 Flexural stiffness coefficient 
To compute the flexural coefficient, the unit cell is submitted to an average 
curvature C and mixed boundary conditions (Neumann in the y-direction and 
periodic in the x-direction), see Buannic et al. [8]. The analytical corresponding 
strain field for the homogeneous unit cell is: 

̂ߝ  ൌ ݕܥ ቀe୶۪ e୶ െ
߭

1 െ ߭
e୷۪ e୷ቁ (6)

where ۪ denotes the dyadic product. 
     The present finite element simulation computes the displacements ݑ# which 
correspond to a fluctuation strain field around ̂ߝ. That is to say that the 
mechanical problem is solved with a total strain tensor equal to: 
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ߝ  ൌ ̂ߝ  ሻ (7)#ݑሺߝ

     Then, the effective flexural coefficient is obtained by equalling the resulting 
strain energy ܹכ to its analytic expression in the homogeneous case. It leads to: 

෩௫ܦ  ൌ
כ2ܹ

ଶܥݓ
 (8)

2.2.2 Shear stiffness coefficient 
To compute the shear coefficient, prescribed displacement boundary conditions 
are applied to the upper and lower faces (ݑ௫ ൌ ௫ݑ on the upper face, and ߜ ൌ 0 
on the lower one). 
     As previously, the effective shear coefficient is obtained by equalling the 
computed strain energy ܹכ to its analytic expression in the homogeneous case. It 
leads to: 

෩௫௭ܦ  ൌ
ଶ݄כ2ܹ

ଶߜݓ
 (9)

2.3 Comparison between homogenized and architectured panels for few 
examples 

Before optimizing the geometry with regard to these effective stiffness 
coefficients, it seems interesting to compare the four-point bending stiffness 
estimated with Allen’s expression, eqn. (2), substituting the coefficients by the 
effective one, and computed with a finite element simulation on the whole 
architectured panel. 
 

  
Homogeneous Square Triangle 

  
Random Cubic Cubic centred 

 
 

Figure 5: Sketch of the different tested designs, fig. 4. The relative density is 
0,4 for all except the homogeneous one. 
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     It is obvious that the kinematic assumptions used by Allen that leads to 
eqn. (2) are no more valid when the panel is architectured. But let us even do it 
and evaluate how far this estimation is from the finite element computations 
results. Figure 5 compares the four-point bending stiffness estimated via eqn. (2) 
with the one computed by finite element method similarly to Section 2.1, for 
different designs shown in fig. 5. The relative density is 0,4 for all the designs 
except the homogeneous one. 
 

 

Figure 5: Comparison between the four-point bending stiffness estimated 
with the effective coefficients and computed by the finite element 
method, for different designs. 

     It can be observed that the Allen analytical model used with the effective 
coefficients identified on a periodic unit seems still to be correct for refined 
architectures (i.e. architectures having a characteristic length small enough 
compared to the plate thickness). For highly heterogeneous architectures, the 
model appears stiffer but still gives a good order of magnitude. Two main 
reasons could explain this shift. First, the kinematic of deformation is strongly 

10

30

50

70

90

110

20 25 30 35 40 45 50

F
ou

r-
po

in
t b

en
di

ng
 r

ig
id

ity
 R

f
[N

/m
m

2 ]

Distance between inner indenters s [mm]

Allen homogeneous FEM homogeneous

Allen square FEM square

Allen triangle FEM triangle

Allen random FEM random

Allen simple cubic FEM simple cubic

Allen centered cubic FEM centered cubic

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 112, © 2010 WIT Press

444  High Performance Structures and Materials V



modified in heterogeneous architectures so that the analytic expression is not 
valid anymore, as was said above. For example, small fluctuations of the 
computed stiffness around a smooth evolution for the triangle design are 
observed, which is due to the position of the inner indenters relatively to the 
internal diagonal beams. The second reason is that the computation of the shear 
coefficient is made with prescribed displacement boundary conditions, well 
known to be leading to a stiffer effective behaviour. 

3 Shape optimization 

For any design of architectured panel, the previous homogenization method 
enables one to compute the corresponding flexural and shear coefficients 
appearing in eqn. (2) and to estimate the four-point bending stiffness. Using 
these coefficients as variables of a multi-objective function ܬሺܦ௫,  ௫௭ሻ, shapeܦ
optimization can be performed to give an idea of the design that could give the 
best performance for a cellular flexural panel with a given relative density. 

3.1 Algorithm 

In order to enable topology changes and to avoid virtual composite matter, the 
shape representation is done by the level-set method (Eschenauer and 
Olhoff [9]). All admissible shapes Ω  are included in the working domain D, 
which is the unit cell in this case. Then, the shape is captured by the level-set 
function defined as: 

 ቐ
߰ሺݔሻ ൌ 0  ߲Ω ת ܦ
߰ሺݔሻ ൏ 0     Ω          
߰ሺݔሻ  0  Ωഥ\ܦ

 (10)

The algorithm modifies the geometry at each iteration transporting the level-set 
function according to the Hamilton-Jacobi equation: 

 
߲߰
ݐ߲

 |߰|ܸ ൌ 0 (11)

where V is the velocity chosen with regard to the shape derivative. 
     The rigorous definition of the shape derivative as well as its analytical 
expressions for the compliance of the linearized elasticity problem are given by 
Allaire et al. [10]. Let us just remind ourselves that for the strain energy, which 
expression is: 

ሺΩሻכܹ  ൌ
1
2
න :ሻݑሺߝܣ ,ݔሻ݀ݑሺߝ
Ω

 (12)

the shape derivative in the ߠ-direction, due to Cea et al. [11], is given by: 
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 (13)

where u is the solution of the elasticity problem (self-adjoint) and n the normal 
vector to the boundary. 
     Since the previously defined effective stiffness coefficients ܦ෩௫ and ܦ෩௫௭ are 
proportional to the strain energy, the shape derivative of the following multi-
objective functions will be derived from eqn. (13). 
     Finally, it can be demonstrated (see Allaire et al. [10]) that choosing 
adequately the velocity V equal to the integrand of the shape derivative leads to a 
transformation of the shape in a direction that increases the objective function. 
Therefore, for each iteration, finite element simulations on a regular grid 
(Q2 elements) are performed to compute the effective coefficients and their 
shape derivative. Then, a resolution of the transport equation (11) with an 
explicit first order upwind scheme (see Sethian [12]) modifies the design of the 
architectured unit cell. As detailed by Allaire et al. [10], the level-set function is 
periodically reconditioned to the signed function to ensure sufficient regularity. 

3.2 Shape optimization on the unit cell 

This shape optimization algorithm was used to optimize the distribution of 
matter in the unit cell initialized with the random or the centered cubic designs 
(fig. 4). The two objectives to be maximized are the effective flexural and shear 
coefficients, with a constraint on the relative density that have been chosen equal 
to 0,4. The results for two objective functions are presented: the weighted sum 
(as proposed by Ashby [13]) and the weighted product of the normalized 
stiffness coefficients. 

3.2.1 Objective function as a weighted sum 
The following results are obtained with an objective function as a weighted sum 
of the normalized effective coefficients: 

ଵܬ  ൌ ߙ
෩௫ܦ
௫ܦ

 ሺ1 െ ሻߙ
෩௫௭ܦ
௫௭ܦ

 (14) 

where ܦ෩ are the effective coefficients, eqns. (8) and (9), and ܦ are the 
homogeneous coefficients, eqns. (3) and (4). 
     Figures 6 and 7 show the architecture evolution of the unit cell during 
optimization with regard to the shear coefficient only (ߙ ൌ 0), whereas figures 8 
and 9 shows the one with regard to the flexural coefficient only (ߙ ൌ 1). 
     The computed optimized shapes confirm the engineer intuition. The 
optimization of the shear coefficient promotes diagonal beams, whereas the one 
of the flexural coefficient displace the matter as far as possible of the neutral axis 
of bending. 
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Figure 6: Iterations 0, 10, 20 and 30 of the unit cell initialized with the 
centered cubic architecture and with α ൌ 0. 

 

 

Figure 7: Iterations 0, 10, 20 and 30 of the unit cell initialized with the 
random architecture and with α ൌ 0. 

 

 

Figure 8: Iterations 0, 5, 10 and 15 of the unit cell initialized with the 
centered cubic architecture and with α ൌ 1. 

 

 

Figure 9: Iterations 0, 5, 10 and 15 of the unit cell initialized with the 
random architecture and with α ൌ 1. 

     For intermediate values of the weight ߙ, the optimized shapes are strictly 
identical to the one obtained with ߙ ൌ 0 or 1. It seems that one of the coefficient 
is quickly neglected in order to only promote the other. The decrease of the 
neglected coefficient appears slower than the increase of the promoted one, so 
that the total objective function increases. 

3.2.2 Objective function as a weighted product 
The following results are obtained with an objective function as a weighted 
product of the effective coefficients: 

ଶܬ  ൌ ቆ
෩௫ܦ
௫ܦ
ቇ
ఉ

ቆ
෩௫௭ܦ
௫௭ܦ

ቇ
ଵିఉ

 (15)

     Figures 10 and 11 compare the optimized architectures obtained after 30 
iterations with different values of the weight ߚ. Gradually from ߚ ൌ 0,2 to 0,8, 
the observed tendency is to grow the upper and lower faces as well as to reduce 
the number and the size of diagonal beams. 
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Initial shape ߚ ൌ 0,2 ߚ ൌ 0,5 ߚ ൌ 0,8 

Figure 10: Iterations 0 and 30 of the unit cell initialized with the centered 
cubic architecture and with different values of  β. 

 

  
Initial shape ߚ ൌ 0,2 ߚ ൌ 0,5 ߚ ൌ 0,8 

Figure 11: Iterations 0 and 30 of the unit cell initialized with the random 
architecture and with different values of  β. 

     Looking at the evolution of the corresponding bending stiffness during 
optimization, fig. 12, the symmetric value of  ߚ ൌ 0,5 gives the stiffest 

 

Figure 12: Evolution of the four-point stiffness R (eqn. (2) with s ൌ 50 mm 
and l ൌ 90 mm) during optimization for unit cells initialized to the 
random architecture (black lines) and to the  random architecture 
(grey lines). Plain lines, dashed lines and dots correspond 
respectively to β ൌ 0.2, 0.5 and 0.8. 
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optimized architecture. Indeed, ߚ ൌ 0,2 promotes too much the shear coefficient 
so that the faces are too thin. Whereas ߚ ൌ 0,8 neglected it too much to the 
extent that all the matter in-between the two faces disappears. This complete 
disappear of matter is the result of a numerical effect at the reconditioning steps. 
The latter slightly modify the boundary and tend to delete the thinnest beams. All 
the decreases of bending stiffness observed of the figure 12 are due to this effect. 
Notice that quantitative comparisons between the bending performance of the 
final architectures are not possible because the plotted four-point bending 
stiffness is just an estimation as presented in Section 2.3. However, this results 
give interesting design directions that deserve to be considered for other 
functionalities and constraints (process, plastic deformation, failure mode, etc.). 
 

4 Conclusion 

The use of shape optimization was introduced to the conception of cellular 
material, like periodically architectured panels. In comparison with structural 
optimization, an additional homogenization procedure is needed to define 
relevant objective functions. In the panel case, it consists in the flexural and 
shear stiffness coefficients respectively computed with an applied curvature and 
shear strain FEM simulations on the unit cell. 
Then, shape optimization was performed with objective functions as weighted 
sum and weighted product. The weight sum objective function leads to non 
admissible architectures, since one of the flexural or shear stiffness is completely 
neglected for the other. The weighted product gives more relevant results. For 
each value of the weight, different optimized architectures are obtained. Even if 
no quantitative comparisons were allowed, efficient architectures have been 
revealed and deserve to be chosen for further development steps. 
     An intermediate value of ߚ appears leading to the stiffest architectures. 
However, in perspective, it would be appropriated to give a physically based 
value of this weight, related to the specifications of the future product. 
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