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Abstract 

This paper is concerned with the analysis of a laminated composite cylinder, 
considering both the pre-stress and lay-ups of unilateral filaments, i.e. filament 
winding or fiber placement, which involve fiber pre-stress and the best lay-up in 
laminas for waviness reduction. The fiber pre-stress applied in individual plies is 
shown to cause an eigenstress in the respective plies, and relaxation stresses in 
the already completed plies. Influence functions (influence tensors) that relate 
the ply stresses to the applied pre-stress forces are derived. The goal is to 
determine fiber pre-stress distributions through the wall thickness such that the 
total stresses due to external hydrostatic pressure and the fiber pre-stress in 
individual plies are as uniform as possible through the wall thickness and 
confined by the ply strength magnitudes. Generalized plain strain is the starting 
model for the formulation of the problem, which is to be solved. Optimal  
pre-stress of the pseudo 3D problem based on the generalized plain strain is 
solved in some previous papers by the author, which leads to uniformly 
distributed stresses in a selected direction through the thickness of the cylinder. It 
is of great interest to engineers to consider the optimization of stresses that are 
dependent also on the lay-ups of reinforcing filaments, for example in classical 
composites. In order to attain the optimal result, which depends also on the 
arrangement of filaments, an extended cost functional has to be suggested. For 
the practical production and creation of such composites, see the description of 
the build-up process in the previous publication by Dvorak and Procházka 
(Thick-walled composite cylinders with optimal fiber prestress. Composites Part 
B 27B: 643-649 1996). The great advantage of the theoretical pseudo 3D model 
is in the fact that the solution of the basic problem of laminated cylinders, which 
describe the behavior of layered composite cylinders, is quite simple and leads to 
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a system of simultaneous linear algebraic equations. While before only the 
isotropic structure of the composites envisaged was taken into account in 
practical examples, now, inevitably, anisotropic layers have to be considered in 
each step of the solution. Hence, the basic formulation is slightly more 
complicated, but still leads to a system of linear equations. Since the cost 
functional is quadratic, the optimum condition is formed in terms of a system of 
linear equations. A typical example will follow the theory. 
Keywords: optimal fiber pre-stress, optimal lay-ups, laminated cylinder, 
hydrostatic pressure. 

1 Introduction   

It is well known that relatively thick unidirectional fiber composites that are 
carefully manufactured for reduced fiber waviness (and consequently possible 
kinking) can support axial and hoop compressive stresses of significant 
magnitudes. In the structures that are produced by fiber placement or filament 
winding, fiber waviness can be reduced by fiber pre-stress applied appropriately 
during the curing process. Apart from the potentially beneficial effect on ply 
compressive strength, the consequences of fiber pre-stress applied in a large 
laminated structure are not well understood. Throughout this paper, the same 
material properties are supposed for the laminas.  
     Considering the hydrostatic pressure of hollow laminated cylindrical 
structures (submersibles, tunnels, aircrafts, etc.), a conventional solution starting 
with generalized plain strain state is fully described in [1], which involves even 
eigenstrains and eigenstresses in the formulation. The fabrication process is also 
suggested in [1] and developed in [2] and [3]. In [4] it is proved that the 
optimization for minimum stress leads to the uniform distribution of prevailing 
stresses in hoop and axial directions. Moreover, it has been be shown in [1] that 
the number of eigenstresses in a laminated cylinder (or plate, shell, arch, etc.) 
can serve as a design parameter for the optimization problem; reducing stresses 
in the laminate structure is equal to the number of layers minus one. From this 
one can always arrange the pre-stress in such a way that all filaments are in 
tension due to superposition of the external load and optimal pre-stress. 
Constraint conditions are stated in [3], which are very reasonable: The stress 
cannot exceed a prescribed value of strength i.e., generally the solution could not 
exist at all. Then the structure has to be redesigned. In order to fulfill one 
constraint condition, that the pre-stress forces are as low as possible, while at the 
same time the pre-stress is optimal, the orientation of fibers (lay-up) can be taken 
into consideration. Recall that in all laminas the same material properties are 
used; only the set-up of plies influences the differences in stiffness or 
compliance with the generalized Hooke’s law. 
     Using the theoretical framework developed in [1] and [2] we establish a set of 
influence functions that evaluate the ply eigenstresses in terms of the pre-stress 
forces applied to the individual layers of the laminate. Constant pre-stress 
applied uniformly to all plies is shown to reduce possibly high stress gradients, 
with compressive stresses at the inner surface that may impair the load bearing 
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capacity of the structure. Finally, we establish a nonlinear optimization 
procedure for solving the problem of finding fiber pre-stress distribution that 
generates minimized residual stresses that do not exceed certain prescribed 
magnitudes. In superposition with the stresses due to the applied hydrostatic 
pressure, the eigenstresses produce total stresses that lie within given ply 
strength limits.  

2 Generation of eigenstresses 

The eigenstress caused by fiber pre-stress will be denoted 

by },...,,,,,...,,,{},{ 321321
z
n

zzzz
n

z λλλλλλλλ θθθθ  λλλ , in which n  is the number of 

laminas, and only two out of three directions { zx ,,θ } are reflected. This is why 
it can be shown that the r -direction does not have any significant effect on 
overall stresses, either in individual layers or in the entire structure. Consider a 
cylindrical layer (i) of inner radius ai, outer radius bi, and thickness iii abt  . 

Let iφ denote the angle that all fibers in the layer (i) contain with the longitudinal 

z-axis of the cylinder. The eigenstress },{ z
iii λλθλ  in layer (i) is caused by the 

application of a certain pre-stress force Pi to each fiber in its winding 
direction iφ , both after curing; therefore, this stress is preserved after curing as 

part of the total fiber stress. The fiber pre-stress force components in the hoop 
and axial directions are, see Fig. 1, 

 ii
z

iiii PPPP φφθ cos     sin   (1)  

 

 

Figure 1: Face view of the laminated cylinder with the resulting pre-stressing 
force in layer j . 
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     The axial and hoop components of the eigenstress in the cylinder coordinate 
system can be found as follows. Consider a small square element of the ith layer 
in the zθ -plane, where the θ -axis is in the hoop direction and the z-axis is in the 
longitudinal direction of the composite cylinder. For simplicity, let the 
reinforcement be represented by a monolayer of fibers of diameter id , and 

spacing is , evaluated in terms of fiber volume fraction ic , as, 

 
ii

i
i ct

d
s

4

2π
  (2) 

which straightforwardly follows from the definition of fiber volume ratio in a 
unit cell given by a rectangle ii ts  . 

     This represents the average distance between the fibers’ axes measured in the 
direction perpendicular to the fibers in each ply. However, in the planes 
perpendicular to the θ - and z-axes of the cylinder, the average distances 
between the fiber axes will be, 

 
i
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 in plane θ = const.,      
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cos
 in plane z = const., (3) 

     Since the force iP  is applied to the individual fibers and the hoop and axial 

components are defined in (1), the eigenstresses are related to the pre-stressing 
force components in layer i as, 
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where the expression 
2

4

i

i

d

P

π
represents the magnitude of the actual pre-stress 

applied to the fibers. It obviously holds that 0θλi for 00 plies, 0z
iλ  for 900 

plies. Moreover, by dividing both formulas in (4) a relation between 
eigenstresses evidently follows,  

 iz
i

i φ
λ

λθ 2tan  (5) 

and z
ii λλθ 3 for 600 plies.  

     Using the above notation we can eventually write in matrix form:  

θθθ PSλ  , zzz PSλ  , where },...,,{ 21
θθθθ
nPPPP , },...,,{ 21

z
n

zzz PPPP (6) 
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     The ( nn ) matrices zSS ,θ are of the form: 
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3 Stiffness matrix in one lamina 

Since parallel winding of filaments in each lamina is assumed, the generalized 
Hooke’s law holds valid, 
 λLεσ   (7) 

where T},,{ zr σσσ θσ is the stress tensor with the only components being 

different from zero and similarly T},,{ zr εεε θε is the strain tensor, both 

written in vector notation, as usual. Tensor λ  is defined in compliance with the 

previous section as: T},,0{ zλλθλ  because there is no pre-stress in the radial 

direction. Note that symmetric lay-up is supposed and the thickness of the layers 
is very small, so that no shear stress is induced in the composite cylinder. The 
stiffness matrix becomes: 
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where      ,
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     On the other hand the stresses and strains transformed by the angle φ  from 

the coordinate system generated by the fiber direction 
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system given by the original radial (r), hoop ( θ ) and axial (z) coordinates 
provide: 
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     As said above, symmetric lay-up of φ  declination from the z-axis is 

assumed, and the shear stress (similarly strain) disappears, i.e. 
 0)cos()sin()(cossin)(  φφσσφφσστ θθθ zzz  (10) 

     Then a simple transformation rule holds valid: 
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     Moreover, εLσ  , Lεσ   and 
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     After substituting (13) into (12) it is seen that the material properties are 

dependent on the direction of the fiber on φ2cos  and φ2sin , see also (6). 

Similarly to the approach suggested in [4], where the decisive parameter was the 
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volume fraction of fibers, here straightforwardly the assessment of material in an 
arbitrary direction φ  being in a pair is  

 φφφ 29020 sincos LLL   (14) 

where φL  is the stiffness matrix in the φ  direction, 0L  is the stiffness matrix of 

0φ  and 90L  is that of 90φ . Recall that the angle φ  is measured from the 

axial direction.  

4 Algorithm of optimization 

In the first step, optimization of laminated composite is carried out based on the 
algorithm described in [1], where no fabrication is considered, i.e. no effect of 
mandrel is employed. The solution is fully described in this paper and leads to 
the uniform stresses in each lamina in both the axial and hoop directions. Recall 
that the optimal solution is unique and exists under the condition that at least one 
pre-stress is given. This condition enables us to arrange that even only tensile 
stresses in fibers can be ensured as a result of the optimization; for details see [4] 
(compression in a fiber is not realistic, as the fibers work in a similar manner to 
ropes). In order to get uniform distribution of both axial and hoop stresses, we 
introduce the pre-stress in each lamina but one.  
     Suppose that we have available the coefficients of the stiffness matrix of the 
anisotropic composite involving fibers in the axial direction 
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and that in the hoop direction  
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     Note that the value of uniformly distributed stresses along the thickness of the 
laminated cylinder is attained independently on the stiffness, as the result follows 
from statical equilibrium for a given geometry and hydrostatic loading. Let the 
hoop optimal stress be denoted as θθσ

~  and in axial direction zzσ~ , both being the 

same in each layer. The distribution of prestresses (eigenstresses) is strongly 
dependent on the stiffness matrices in the layers and the stiffnesses are again 
dependent on the orientation of the filaments (lay-ups) in each individual lamina. 
Consequently, we have to iterate the orientation of the fibers and accordingly 
also the current stiffness matrix. Recall that the goal of this optimization is to get 
such lay-ups, which deliver the correct pre-stressing force.  
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1. Carry out the optimization in the sense of [1] to get θθσ
~  and zzσ~ . 

2. Select φ , say equal to 90°, and accomplish the optimization with the 

stiffness matrices according to (14), which are considered in each 

lamina. We get eigenstresses θλi  and z
iλ  (in the first step 0z

iλ ). 

3. The angles φ  corresponding to the optimal solution are calculated from 

(5) for each lamina.  
4. Substituting the sines and cosines of the angles calculated in the 

previous step and the given matrices (15) and (16) into (14) yields a 

new matrix φL  in each lamina.  
5. Realize optimization with the new material coefficients in the sense of 

[1] to get θθσ
~  and zzσ~  (they do not change) and also eigenstresses θλi  

and z
iλ . New angles φ  are calculated from (5) for each lamina.  

6. If it holds that | oldφφ  | ε  everywhere, where oldφ  is the angle 

obtained from the previous iteration step (the starting value is, 
according to our assumption, equal to 90°, but this choice is not 
mandatory, only 0 90    , and ε  is the a priori selected error of 

iteration, then calculate the prestressing force P  from (4). Otherwise go 
to point 4. 

     Note that the convergence is ensured for every choice of starting angle. In 

creating the algorithm for a computer program, the fact that the lay-ups do not 
differ in adjacent laminas too much can be utilized. It can speed up the 
consumption of computer time.                             

Procedure: 

 

5 Example 

In what follows, a laminate structure is considered with special realistic values of 
a classical composite based on an epoxy matrix. The material coefficients are 
taken from [6]. The stiffness coefficients of the AS4/3501-6 (012/9038)s laminate 
(in MPa) are listed below:  

94100,6.11699,8.41200 ,57306506,14240, 000000  zzzrzrrr LLLLLL θθθθ  

8.41200,6.1169994100, 6506,5730,14240, 909090909090  zzztzrrr LLLLLL θθθθ  

     The loading is applied on the outer boundary of the hollow laminated 
composite cylinder by the hydrostatic pressure 800 MPa. The pre-stress is 
introduced in all layers but the first one, where implicitly zero eigenstress is 
assumed in both axial and hoop directions. The overall optimal stresses are 

66.1066~ θθσ MPa and 33.853~ zzσ MPa. For 90    the axial and hoop pre-

stresses are illustrated in Fig. 2. The following pictures are drawn in such a way 
that the horizontal axis describes the local radii along the thickness of the 
cylinder, i.e. the inner radius is 9.6 m and the outer radius is 10.0 m. The 
thickness is always measured in meters. In Fig. 2, the vertical axes describe the 
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pre-stress in MPa. The triggering value in the iteration above described changes 
during the iteration and attains the values of the optimal degrees of filaments 
depicted in Fig. 3 and optimal forces in the fibers directed according to the 
orientation of angles. Here we considered the unit cell with the fiber volume 
ratio equal to 0.3, the radius of fibers is 1 mm, and the values of pre-stressing 
force are measured in the scale 105.   
     From Figs. 3 and 4 one can deduce that the improvement of the calculation is 
necessary to get more accurate results. This is obvious in case the only 
reinforcement and, consequently, the source of anisotropy are the filaments being 
winded according to the above calculation. 
 
 
 

 

Figure 2: Pre-stress at  = 90°. 

 

 

Figure 3: Optimal lay-ups. Figure 4: Optimal pre-stressing force. 
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6 Conclusion 

Optimal pre-stress of a laminated anisotropic laminated cylinder under 
hydrostatic load is studied in this paper. More objective supposition is applied 
here: the fiber orientation is respected in the optimization for minimum stresses 
in both the axial and hoop directions. The radial direction is negligible; the 
stresses are relatively too small. Since the problem appears to be nonlinear, a 
natural iteration process is prescribed, starting from the orientation of fibers in 
the hoop direction. As a partial result, lay-ups in each lamina are derived, which 
are principally different from 90    or 0   . They have to be taken into 

account when optimizing the pre-stress in one particular iteration step. The lay-
up then generates the components of the stiffness matrices in laminas. 
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