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Abstract 

This research explores micromechanics modeling for the prediction of stiffness 
and strength properties of nanocomposites consisting of randomly oriented 
carbon nanotubes (CNTs) and an epoxy matrix, and multiscale composites 
consisting of unidirectional glass fibers, randomly orientated CNTs, and an 
epoxy matrix. For stiffness properties, including Young’s modulus, Poisson’s 
ratio, and shear modulus, of CNTs/epoxy composites and glass 
fiber/CNTs/epoxy composites, the Mori-Tanaka model and Halpin-Tsai 
equations were used. To obtain the strength properties of the composites, 
including tensile and compressive strength, several empirical equations were 
employed. The estimated mechanical properties of nanocomposites were used as 
matrix properties in the micromechanical models for multiscale composites. The 
results showed that the stiffness and strength properties of nanocomposites and 
multiscale composites were improved by integrating CNTs in the systems. 
Keywords: carbon nanotubes, fiber reinforced composites, micromechanics 
modeling, mechanical properties. 

1 Introduction 

The extraordinary physical properties of carbon nanotubes (CNTs) have 
encouraged many researchers to study CNT/polymer nanocomposites. de Viollia 
et al. [1] showed improvement of the tensile modulus and strength with the 
inclusion of 0.1 wt.% of CNTs in epoxy resin. The improvement of Young’s 
modulus, yield strength, strain to failure, and fracture toughness were reported 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 112, © 2010 WIT Press

High Performance Structures and Materials V  279

doi:10.2495/HPSM100261



with the integration of CNTs in a polymer matrix [2-4]. Adding 5 wt.% of 
MWNTs in an epoxy enhanced the shear strength by 45.6% in Hsiao et al. [5]. 
Nanoparticles can also be mixed in fiber-reinforced resin to improve the matrix-
dominated properties, such as the compressive and flexural strength of a 
composite [6, 7]. Gojny et al. [8] and Wichmann et al. [9] showed the 
improvement of interlaminar shear strength of glass-fiber-reinforced composites 
by nanoparticle modification in a polymer matrix. 
     In conjunction with experimental studies, prediction of the mechanical 
behavior of CNT-polymer composites using numerical models is necessary for 
their use in industrial structures. The Mori-Tanaka model [10] and Halpin-Tsai 
equations [11] are popular methods for estimating the mechanical properties of 
fiber reinforced composites and are used widely to predict the mechanical 
properties of nanocomposites [12-16]. Using the Eshelby-Mori-Tanaka method, 
Ashrafi et al. [13] showed that CNTs are able to enhance the axial Young’s 
modulus and longitudinal wave velocity of nanocomposite beams. Odegard et al. 
[14] and Ashrafie and Hubert [15] linked the atomistic simulations of nano-
structured materials to continuum models of the corresponding bulk material to 
determine the properties of SWNT/polymer composites.  
     The Halpin-Tsai equations, based on the generalized self-consistent 
micromechanics solutions, are simple approximate forms for composites 
modeling developed by Hill [17, 18]. There have been several research efforts to 
apply the Halpin-Tsai equations to CNT-reinforced polymer composites. To 
obtain Young’s modulus and tensile strength of the MWNTs/phenolic 
composites, Yeh et al. [19] modified the Halpin-Tsai equation by employing an 
orientation factor and an exponential shape factor in the equation. Several 
modified Halpin-Tsai equations were used to obtain the tensile modulus of 
nanocomposites, including randomly oriented CNTs [2, 20, 21]. 
     Several research works have been done to predict the mechanical properties 
of nanocomposites. However, there are few research works for obtaining the 
mechanical properties of multiscale composites using numerical models. In this 
study, the stiffness and strength properties of nanocomposites and multiscale 
composites were predicted using the Mori-Tanaka model, Halpin-Tsia equations, 
and several empirical equations. To obtain the stiffness and strength properties of 
multiscale composites, a methodology is presented by using the estimated 
stiffness and strength properties of nanocomposites as mechanical properties of 
the matrix in the micromechanics models for multiscale composites.  

2 Modeling 

Fig. 1 illustrates multiscale composites simulated in this research. The 
composites consist of unidirectional continuous glass fibers, random orientation 
CNTs, and an epoxy matrix. 
     Fig. 2 shows a schematic of modeling for nanocomposites and multiscale 
composites. For the stiffness properties of CNT-modified epoxy composites, the 
Mori-Tanaka model was used. To obtain the stiffness properties of multiscale 
composites, the Mori-Tanaka model and Halpin-Tsai equations were employed  
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Figure 1: Multiscale composites. 

 

Figure 2: Schematic of modeling. 

and the results of both models were compared. The two micromechanics models 
need the material properties of two constituent materials, reinforcement and the 
matrix. For the glass fibers/CNTs/epoxy matrix composites, the material 
properties of CNTs/epoxy composites from the Mori-Tanaka model were used as 
the matrix properties in the calculation of the two models, which makes the 
system multiscale consisting of nanoscale CNTs and microscale fibers. The 
stiffness properties of nanocomposites were also used for the prediction of the 
strength properties of multiscale composites as shown in fig. 2. In the relation of 
the strength properties of nanocomposites and multiscale composites, the 
estimated strength properties of nanocomposites were used as the strength 
properties of the matrix in multiscale composites.  
     In the simulation, several assumptions were made to simplify the problem. It 
was assumed that the interfacial bondings of the fiber-matrix and the CNT-
matrix were perfect. Each CNT was assumed to be a straight rod with the same 
diameter and length and the same mechanical properties. Additionally, the 
dispersion of CNTs was perfect and there was no void in the matrix. 

2.1 Modeling for stiffness properties 

2.1.1 Mori-Tanaka model and stiffness tensor 
The first step of this work is to obtain stiffness properties of CNT/epoxy 
nanocomposites. The stiffness properties of composites including, Young’s 
moduli, Poisson’s ratios, and shear moduli, can be obtained from the stiffness 
tensor [22]. The stiffness tensor Cijkl of a composite system, which contains non-
colliding and homogeneously dispersed rigid rods with uniform aspect ratio, can 
be expressed as [23, 24] 
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where ij  is the Kronecker Delta ( ij = 1 when ji   and ij = 0 when ji  ); 

aij and aijkl are the second and fourth rank CNT orientation tensors (also called 
the moments of the distribution), respectively [23]; the five scalar constants, Bi’s, 
are obtained from the coefficients of the unidirectional stiffness tensor [23, 24]. 
In this work, the unidirectional stiffness tensor was obtained using the Mori-
Tanaka model [12-15, 25, 28], expressed as   
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where mC  is the stiffness tensor of the matrix material; fC is the stiffness tensor 
of the filler; Vm and Vf are the matrix and filler volume fractions, respectively; I 
is the identity tensor; fA is the dilute mechanical strain concentration tensor for 
the filler given as the ratio between the average filler strain (or stress) and the 
corresponding average in the composite [11, 14]  

 

      11 
 mfmf CCCSΙA  (3) 

 

     The tensor S, given by Eshelby [11], is called Eshelby’s tensor whose 
elements are functions of the aspect ratio of an ellipsoidal inclusion and the 
Poisson’s ratio of the matrix [13]. The terms enclosed with angle brackets in eqn 
(2) represent the average (or expectation) value of the term over all orientations.  

2.1.2 Halpin-Tsai equations 
To obtain stiffness properties of multiscale composites, Halpin-Tsai equations 
were used, which are based on the generalized self-consistent micromechanics 
solutions [17, 18]. Halpin and Kardos [18] reviewed the developments of Halpin-
Tsai equations. The equations have been used for a variety of reinforcement 
geometries, including fibers, flakes, and ribbons. The general form of the Halpin-
Tsai equations for aligned reinforcements is expressed as [17] 
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where P is composite property, such as E11, E22, G12, G23, and ν23; Pr is 
reinforcement property, such as Er, Gr, and ν r; Pm is matrix property, such as Em, 
Gm, and ν m;   is a measure of reinforcement geometry, packing geometry, and 

loading conditions; Vr is reinforcement volume fraction (see e.g. [29] for 
complete Halpin-Tsai equations).  
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2.2 Modeling for strength properties 

Since predicting strength properties of composites is not as successful as 
predicting stiffness properties of the composites, many research efforts are active 
in this field. Several empirical equations for strength properties of composites 
are presented in Barbero [26]. The equations used in this research for the 
prediction of strength properties of nano and multiscale composites are listed in 
Appendix, eqns (A1)-(A7). 

3 Results and discussion 

Stiffness properties and ultimate strength properties of nanocomposites and 
multiscale composites were predicted in this work. As mentioned in Section 2, 
the nanocomposite properties were used in the calculation of Mori-Tanaka model 
and Halpin-Tsai equations for multiscale composites. The three constituent 
materials, glass fibers, epoxy matrix, and CNTs, were assumed to be isotropic 
materials. Young’s moduli of glass fiber and epoxy were 72 GPa and 3.0 GPa, 
respectively [17, 26]. Poisson’s ratios of glass fiber and epoxy were 0.2 and 0.3, 
respectively. 450 GPa and 0.3 were used for Young’s modulus and Poisson’s 
ratio of CNTs, respectively [27]. Each CNT have same geometry, 20 nm of 
diameter and 10 μm of length. The fiber volume fraction of multiscale 
composites was 0.6 and the simulation was performed from 0 to 10 vol.% of 
CNTs.  

3.1 Mechanical properties of nanocomposites 

3.1.1 Stiffness properties of nanocomposites 
Fig. 3 shows the stiffness properties of nanocomposites including random 
orientation CNTs obtained by using eqn (1). Since tensile and shear moduli of 
CNTs are higher than epoxy, tensile and shear moduli of nanocomposites 
increase as CNT loading increases in the epoxy matrix. Poisson’s ratio in fig. 3 
(c) decreases with the increase of CNT loading. The inclusion of high modulus 
CNTs in random orientation may improve the stiffness of nanocomposites, 
resulting in the reduction of Poisson’s ratio of nanocomposites. 

3.1.2 Strength properties of nanocomposites 
Fig. 4 shows tensile strength of nanocomposites obtained using eqn (A7). The 
strength increases as CNT loading increases. It seems that random orientation 
CNTs contribute to the improvement of tensile strength of nanocomposites. 
Since there seem no formulas available for compressive and inplane shear 
strength of randomly oriented composites [26], compressive and inplane shear 
strengths were assumed to be equal to and one-half of the tensile strength, 
respectively. 
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(a) Tensile modulus (b) Shear modulus 

(c) Poisson’s Ratio 

Figure 3: Stiffness properties of nanocomposites. 

Figure 4: Tensile strength of nanocomposites. 

3.2 Mechanical properties of multiscale composites 

3.2.1 Stiffness properties of multiscale composites 
Fig. 5 shows the stiffness properties of multiscale composites obtained by Halpin 
-Tsai equations (eqn (4)) and Mori-Tanaka model (eqn (2)). Young’s and shear 
moduli increase as CNT loading increase, which is similar trend to the properties 
of nanocomposites. The modulus improvement ratios (between the moduli of 10 
vol%-CNT and 0 vol%-CNT composites) of multiscale composites in figs 5 (a) 
and (b), however, are smaller than that of nanocomposites in fig 3 (a) because of 
the existence of fibers. Another interesting finding from fig. 5 is the 
improvements of tensile modulus in longitudinal and transverse directions. In 
fig. 5 (a), longitudinal tensile modulus of multiscale composites at 10 vol.% of 
CNTs is 47.9 GPa which is 7.4% improvement from 44.6 GPa of tensile 
modulus at 0 vol.% of CNTs. Transverse tensile modulus 26.9 GPa at 10 vol.% 
of CNTs is improved from the modulus 9.6 GPa at 0 vol.% of CNTs by  
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(a) Longitudinal tensile modulus (b) Transverse tensile modulus 

Figure 5: Tensile modulus of multiscale composites. 

 
(a) Poisson’s ratio ν12 (a) Poisson’s ratio ν23 

Figure 6: Poisson’s ratio of multiscale composites. 

 
(a) Shear modulus G12 (b) Shear modulus G23 

Figure 7: Shear modulus of multiscale composites. 

180.2%. Since the matrix properties affect the mechanical properties of 
multiscale composites more in transverse direction than in longitudinal direction, 
the enhancement of transverse tensile modulus is more pronounced than 
longitudinal tensile modulus by the inclusion of CNTs. In fig. 5 (b), Halpin-Tsai 
equations generated higher tensile modulus in transverse direction than Mori-
Tanaka model. 
     Fig. 6 shows Poisson’s ratios of multiscale composites. Poisson’s ratios of 
multiscale composites decrease with the increase of CNT loading. Since, in fig. 6 
(b), the Poisson’s ratio ν23 from Halpin-Tsai equations is higher than 0.5, the 
result of Mori-Tanaka model seems more reasonable than that of Halpin-Tsai 
equations.      Fig. 7 shows that shear modulus of multiscale composites. Shear 
modulus increases as CNT loading increases, which is similar to Young’s 
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modulus of multiscale composites. However, Mori-Tanak model generated 
higher shear modulus than Halpin-Tsai equations unlike the result of transverse 
Young’s modulus of multiscale composites in fig. 5 (b). 

3.2.2 Strength properties of multiscale composites 
The strength properties of multiscale composites obtained using eqns (A1)-(A6) 
are shown in fig. 8. Longitudinal tensile strength increases linearly whereas 
transverse tensile strength increases nonlinearly in figs 8 (a) and (b). A similar 
trend is also shown in compressive strengths in both longitudinal and transverse 
directions (figs 8 (c) and (d)). The improvement of transverse tensile strength in 
fig. 8 (b) is more profound than that of longitudinal tensile strength in fig. 8 (a) 
like the tensile moduli in fig. 5.  

 
 

 
(a) Longitudinal tensile strength (b) Transverse tensile strength 

 

 
(c) Longitudinal compressive strength (d) Transverse compressive strength 

 

(e) Inplane shear strength 

Figure 8: Strength properties of multiscale composites. 
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4 Conclusion 

Stiffness properties and ultimate strength properties of nanocomposites and 
multiscale composites were predicted using Mori-Tanaka model, Halpin-Tsai 
equations, and several empirical equations. The stiffness properties of 
nanocomposites were obtained using Mori-Tanaka micromechanics and the 
obtained properties were used for the prediction of stiffness and strength 
properties of multiscale composites. The strength properties of nanocomposites 
were also used as strength properties of matrix in the calculations for strength 
properties of multiscale composites. 
     The result showed that Young’s modulus and shear modulus of 
nanocomposites increase as the CNT loading increases while the integration of 
CNTs reduced Poisson’s ratio of nanocomposites. CNT modification enhanced 
the tensile strength of nanocomposites as well.  
     Stiffness and strength properties of multiscale composites have similar trend 
to the properties of nanocomposites, showing improved properties by CNT 
integration. Based on Poisson’s ratio ν23 of multiscale composites, Mori-Tanaka 
method seems better mechanical property prediction method than Halpin-Tsai 
equations. 

Appendix 

In this work, the empirical formulas in Barbero [26] were employed for ultimate 
strength prediction. For longitudinal tensile strength, the composites were 
assumed to break when the stress in the filler reaches filler strength. With this 
assumption, longitudinal tensile strength can be expressed as [26] 

 

 Fଵ୲ ൌ σ୤ୟ ൤V୤
E୫
E୤
ሺ1 െ V୤ሻ൨ (A1)

 

where σ୤ୟ is tensile strength of filler; Vf is filler volume fraction; Em and Ef are 
Young’s moduli of epoxy matrix and filler, respectively.  
     The empirical formula used for transverse tensile strength is [26] 

 

 Fଶ୲ ൌ σ୫୳C୴ ൤1 ൅ ൫V୤ െ ඥV୤൯ ൬1 െ
E୫
E୤
൰൨ (A2)

 

where σ୫୳ is tensile strength of matrix, Cv is empirical reduction coefficient on 
account of voids which is expressed as 

 

 C୴ ൌ 1 െ ඨ
4V୴

πሺ1 െ V୤ሻ
 (A3)

 

where Vv is void volume fraction. If there is no void in the system, Cv will be 
1.0.  
     Compressive strength of unidirectional filler composites in longitudinal 
direction is lower than the tensile strength of the composites [26]. For 
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compressive strength of the composites, buckling stress was used in this study, 
which is one critical failure mode in longitudinal compression. The buckling 
stress longitudinal compression is expressed as [26] 

 

 Fଵୡ ൌ
G୫
1 െ V୤

 (A4)

 

     Transverse compressive strength may be obtained using eqn (A2), replacing 
the bulk tensile strength of the matrix σ୫୳ by the bulk compressive strength of 
the matrix σ୫୳ୡ [26]. Transverse compressive strength is 

 

 Fଶୡ ൌ σ୫୳ୡC୴ ൤1 ൅ ൫V୤ െ ඥV୤൯ ൬1 െ
E୫
E୤
൰൨ (A5)

 

     Since compressive strength of matrix is higher than tensile strength of matrix, 
σ୫୳ୡ was assumed to be twice of σ୫୳ in this work. 
     For inplane shear strength, an equation similar to eqn (A2) is used. Tensile 
strength σ୫୳ and Young’s modulus E of matrix and filler in eqn (A2) were 
replaced by shear strength of matrix τ୫୳ and shear moduli of matrix and filler. 
The inplane shear strength used in this research is [26] 

 

 F଺ ൌ τ୫୳C୴ ൤1 ൅ ൫V୤ െ ඥV୤൯ ൬1 െ
G୫
G୤
൰൨ (A6)

 

     Since there seems no equation available for random orientation chopped 
strand reinforced composites, empirical equations for chopped strand mat were 
used for chopped strand composites. The tensile strength of random orientated 
and chopped strand mat Fୡୱ୫ି୲  may be expressed as [26] 

 

 
Fୡୱ୫ି୲ ൌ

ସαFమ౪
π
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ଵ

ଶ
ln ቀ
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Fୡୱ୫ି୲ ൌ
ସ஑Fమ౪
஠

ට
Fభ౪
Fమ౪

   for α ൐ ට
Fభ౪
Fమ౪

 
(A7)

 

where  α ൌ
Fల
Fమ౪

. 

     Compressive strength of random orientation chopped strand composites was 
assumed to be equal to the tensile strength Fୡୱ୫ି୲ and shear strength of chopped 
strand composites was assumed to be half of Fୡୱ୫ି୲. 
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