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Abstract 

The paper presents the two-phase MINLP topology and standard sizes 
optimization of a single-storey industrial steel building. The structure consists of 
main portal frames, connected with purlins. It is made from standard hot rolled I 
sections. The Mixed-Integer Non-Linear Programming (MINLP) optimization of 
the structure is applied. The MINLP performs a discrete topology and standard 
dimension optimization, while continuous parameters (stresses, deflections, 
mass, costs, etc.) are calculated simultaneously inside the continuous space. 
Since the discrete/continuous optimization problem of this type of structures is 
non-convex and highly non-linear, the Modified Outer-Approximation/Equality-
Relaxation (OA/ER) algorithm is used for the optimization. The defined mass 
objective function is subjected to the set of equality and inequality constraints 
known from the structural analysis and dimensioning. The dimensioning of steel 
members is performed in accordance with Eurocode 3. 
     The MINLP optimization is performed in two phases. In the first phase, the 
topology optimization of the structure at the relaxed dimensions is performed 
only. This phase gives a good linear global approximation to the structure for the 
next phase. When the optimal topology is reached, the optimization is continued 
at the second phase for the overall topology and standard section discrete 
optimization. Alongside the optimal structure mass, the optimal topology with 
the optimal number of portal frames and purlins as well as all standard cross-
sections are obtained. The paper includes the theoretical basis and a practical 
example with the results of the optimization. 
Keywords: optimization, topology optimization, discrete sizes optimization, 
mixed-integer non-linear programming, MINLP, industrial steel building. 
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1 Introduction 

Over the past thirty years, researchers developed and used many different 
algorithms for structural optimization. In the field of the optimization of steel 
skeletal structures various optimization methods have been proposed. O’Brien 
and Dixon [1] have proposed a linear programming approach for the optimal 
design of pitched roof frames. Guerlement et al. [2] have introduced a practical 
method for single-storey steel structures, based on a discrete minimum weight 
design and Eurocode 3 [3] design constraints. Recently, Saka [4] has considered 
an optimum design of pitched roof steel frames with haunched rafters by using a 
genetic algorithm. One of the latest researches reported in this field is the work 
of Hernández et al. [5], where the authors have considered a minimum weight 
design of the steel portal frames with software developed for the structural 
optimization. It should be noted that all the mentioned authors deal with the 
discrete sizes optimization at fixed structural topologies. 
     This paper discusses the simultaneous topology, standard sizes and 
continuous parameter optimization of an unbraced single-storey industrial steel 
building. The optimization of the portal frames and purlins was performed by the 
Mixed-Integer Non-linear Programming approach (MINLP). The MINLP is a 
combined discrete and continuous optimization technique. In this way, the 
MINLP performs the discrete topology (i.e. the number of frames and purlins) 
and the standard dimension (i.e. the standard cross-section sizes of the columns, 
beams and purlins) optimization simultaneously with the continuous 
optimization of the parameters (e.g. the structure mass, internal forces, 
deflections, etc.). 
     The MINLP discrete/continuous optimization problems of frame structures 
are in most cases comprehensive, non-convex and highly non-linear. The 
optimization is proposed to be performed through three steps. The first one 
includes the generation of a mechanical superstructure of different topology and 
standard dimension alternatives, the second one involves the development of an 
MINLP model formulation and the last one consists of a solution for the defined 
MINLP optimization problem.  
     The objective of the optimization is to minimize the mass of the single-
storey industrial building. The mass objective function is subjected to the set of 
equality and inequality constraints known from the structural analysis and 
dimensioning. The dimensioning of steel members is performed in accordance 
with Eurocode 3.  
     The Modified Outer-Approximation/Equality-Relaxation algorithm is used to 
perform the optimization, see Kravanja and Grossmann [6], Kravanja et al. [7,8]. 
     The two-phase MINLP optimization is proposed. It starts with the topology 
optimization, while the standard dimensions are temporarily relaxed into 
continuous parameters. When the optimal topology is found, the standard 
dimensions of the cross-sections are re-established and the simultaneous discrete 
topology and standard dimension optimization of the beams, columns and purlins 
is then continued until the optimal solution is found. 

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 97,
 www.witpress.com, ISSN 1743-3509 (on-line) 

440  High Performance Structures and Materials IV



2 Single-storey industrial building 

The paper presents the topology and standard sizes optimization of unbraced 
rigid single-storey industrial building steel structures, Fig. 1. The columns, 
beams and purlins are proposed to be built up of standard hot rolled steel I 
sections. 
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Figure 1: Single-storey industrial building. 

     The considered portal frame structures are optimized under the combined 
effects of the self-weight of the frame members, a uniformly distributed surface 
variable load (snow and wind) and a concentrated horizontal variable load 
(wind). The purlins are designed to transfer the permanent load (the self-weight 
of the purlins and the weight of the roof) and the variable load (snow and wind). 
The internal forces are calculated by the elastic first-order method. The 
dimensioning of the steel members is performed in accordance with Eurocode 3 
for the conditions of both the ultimate limit state (ULS) and the serviceability 
limit state (SLS). 
     When the ULS is considered, the elements are checked for the axial, shear 
and bending moment resistance, for the interaction between the bending moment 
and the axial force, the interaction between the axial compression/buckling and 
the buckling resistance moment. 
     The total deflection δmax subjected to the overall load and the deflections δ2 
subjected to the variable imposed load are calculated to be smaller than the 
limited maximum values: span/200 and span/250, respectively. The horizontal 
deflections are also checked for the recommended limits: the relative horizontal 
deflection of the portal frame should be smaller then the frame height/150. 

3 MINLP model formulation 

It is assumed that a non-convex, non-linear discrete and continuous optimization 
problem can be formulated as a general MINLP problem (MINLP-G) in the form: 
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min   ( )xyc fz T +=     
s.t.    ( ) 0xh =     
( ) 0xg ≤                                                         (MINLP-G) 

bCxBy ≤+         

x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP}      

y ∈ Y ={0,1}
m       

where x is a vector of continuous variables specified in the compact set X and y 
is a vector of discrete, mostly binary 0-1 variables. Functions f(x), h(x) and g(x) 
are non-linear functions involved in the objective function z, the equality and 
inequality constraints, respectively. All functions f(x), h(x) and g(x) must be 
continuous and differentiable. All functions f(x), h(x) and g(x) must be 
continuous and differentiable. Finally, By+Cx≤b represents a subset of mixed 
linear equality/inequality constraints. 
     The above general MINLP-G model formulation has been adapted for the 
optimization of mechanical superstructures. The resulting MINLP formulation 
for mechanical superstructures (MINLP-MS) that is more specific, particularly in 
variables and constraints, can be used also for the modelling the steel industrial 
buildings. It is given in the following form: 

min   ( )xyc fz T +=       
s.t.    ( ) 0xh =        
( ) 0xg ≤     
( ) axA ≤         

Ey ≤ e                                                    (MINLP-MS) 
( ) rxRDy ≤+e        

( ) kdLKy ≤+ cne        

( ) sdSPy ≤+ st        

x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP}      

y ∈ Y ={0,1}
m       

     The MINLP model formulation for mechanical superstructures is proposed to 
be described as follows: 

- Included are continuous variables x={d, p} and discrete binary variables 
y={ye, yst}. Continuous variables are partitioned into design variables d={dcn, 
dst} and into performance (non-design) variables p, where subvectors dcn and 
dst stand for continuous and standard dimensions, respectively. Subvectors of 
the binary variables ye and yst denote the potential existence of structural 
elements inside the superstructure (the topology determination) and the 
potential selection of standard dimension alternatives, respectively. 
- The mass or economical objective function z involves fixed mass or 
cost charges in the linear term cTy and the dimension dependant mass or 
costs in the term f(x). 
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- Parameter non-linear and linear constraints h(x)=0, g(x) ≤ 0 and 
A(x) ≤ a  represent a rigorous system of the design, loading, resistance, 
stress, deflection, etc. constraints known from the structural analysis. 
- Integer linear constraints Ey≤ e are proposed to describe the relations 
between binary variables. 
- Mixed linear constraints Dye+R(x) ≤ r restore interconnection relations 
between currently selected or existing structural elements (corresponding 
ye=1) and cancel relations for currently disappearing or nonexisting elements 
(corresponding ye=0). 
- Mixed linear constraints Kye+L(dcn) ≤ k are proposed to define the 
continuous design variables for each existing structural element. The space 
is defined only when the corresponding structure element exists (ye=1), 
otherwise it is empty. 
- Mixed linear constraints Py+S(dst) ≤ s define standard design variables 
dst. Each standard dimension dst is determined as a scalar product between its 
vector of i, i∈I, discrete standard dimension constants q={q1, q2, q3,..., qi} and 
its vector of subjected binary variables yst={yst

1, yst
2, yst

3,..., yst
i}, see Eq. 1. 

Only one discrete value can be selected for each standard dimension since 
the sum of the binary variables must be equal to 1 (Eq. 2): 

∑
∈

=
Ii

st
ii

st yqd      (1) 

1=∑
∈Ii

st
iy             (2) 

4 The optimization 

After the MINLP model formulation is developed, the defined MINLP 
optimization problem is solved by the use of a suitable MINLP algorithm and 
strategies. A general MINLP class of optimization problem can be solved in 
principle by the following algorithms and their extensions: 

- the Nonlinear Branch and Bound, NBB, proposed and used by many 
authors, e.g. E.M.L. Beale [9], O.K. Gupta and A. Ravindran [10]; 
- the Sequential Linear Discrete Programming method, SLDP, by G.R. 
Olsen and G.N. Vanderplaats [11] and M. Bremicker et al. [12]; 
- the Extended Cutting Plane method by T. Westerlund and F. Pettersson 
[13]; 
- Generalized Benders Decomposition, GBD, by J.F. Benders [14], A.M. 
Geoffrion [15]; 
- the Outer-Approximation/ Equality-Relaxation algorithm, OA/ER, by 
G.R. Kocis and I.E. Grossmann [16]; 
- the Feasibility Technique by H. Mawengkang and B.A. Murtagh [17]; and 
- the LP/NLP based Branch and Bound algorithm by I. Quesada and I.E. 
Grossmann [18]. 
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4.1 Modified OA/ER algorithm 

The OA/ER algorithm consists of solving an alternative sequence of Non-linear 
Programming (NLP) optimization subproblems and Mixed-Integer Linear 
Programming (MILP) master problems. The former corresponds to continuous 
optimization of parameters for a mechanical structure with a fixed topology (and 
fixed discrete/standard dimensions) and yields an upper bound to the objective to 
be minimized. The latter involves a global approximation to the superstructure of 
alternatives in which a new topology, discrete/standard dimensions are identified 
so that its lower bound does not exceed the current best upper bound. The search 
of a convex problem is terminated when the predicted lower bound exceeds the 
upper bound, otherwise it is terminated when the NLP solution can be improved 
no more. The OA/ER algorithm guarantees the global optimality of solutions for 
convex and quasi-convex optimization problems. 
     The OA/ER algorithm as well as all other mentioned MINLP algorithms do 
not generally guarantee that the solution found is the global optimum. This is due 
to the presence of nonconvex functions in the models that may cut off the global 
optimum. In order to reduce undesirable effects of nonconvexities, the Modified 
OA/ER algorithm was proposed by Z. Kravanja and I.E. Grossmann [6], see also 
S. Kravanja et al. [7,8], by which the following modifications are applied for the 
master problem: the deactivation of linearizations, the decomposition and the 
deactivation of the objective function linearization, the use of the penalty 
function, the use of the upper bound on the objective function to be minimized as 
well as the global convexity test and the validation of the outer approximations. 

4.2 Two-phase MINLP optimization 

The optimal solution of a complex non-convex and non-linear MINLP problem 
with a high number of discrete decisions is in general very difficult to obtain. 
The optimization is thus proposed to be performed sequentially in two different 
phases to accelerate the convergence of the OA/ER algorithm. The optimization 
is proposed to start with the discrete topology optimization of the building, while 
the standard dimensions are temporarily relaxed into continuous parameters. 
Topology and continuous parameter optimization is soluble (a smaller 
combinatorial problem) and accumulates a good global linear approximation of 
the superstructure (a good starting point for the next phase overall optimization). 
When the optimal topology is found, the standard sizes of the cross-sections are 
re-established and the simultaneous discrete optimization of the topology and 
standard dimensions of the beams, columns and purlins is then continued until 
the optimal solution is found.  
     The two-phase strategy requires that the binary variables should be defined in 
one uniform set. In the first phase, only the binary variables which are subjected 
to topology alternatives become active. Binary variables of standard dimension 
alternatives are temporarily excluded (set on value zero) until the beginning of 
the second phase, in which they participate in the simultaneous overall 
optimization. The same holds for standard dimension logical constraints. In the 
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first phase they are excluded, while the second phase includes them into the 
optimization. 

5 The numerical example 

The example presents the MINLP topology and standard dimension optimization 
of a single-storey industrial building. The building is 25 meters wide, 70 meters 
long and 7.5 meters heigh. The structure is consisted from equal non-sway steel 
portal frames which are mutually connected with the purlins. 
     The portal frame is subjected to self-weight g, uniformly distributed surface 
variable load q (snow s and wind w) and the concentrated variable load at the top 
of the columns P (horizontal wind). Variable imposed load s = 1,8 kN/m2 
(snow), wv = 0,15 kN/m2 (vertical wind) and wh = 0,4 kN/m2 (horizontal wind) 
are defined as the uniformly distributed surface load in the model input data. 
Both, the horizontal concentrated load and the vertical uniformly distributed line 
load on the beams are calculated considering the intermediate distance betwen 
the portal frames. 
     The portal frame superstructure was generated in which all possible structures 
were embedded by 30 portal alternatives, 20 purlin alternatives and different 
standard size variation. The superstructure comprised 24 different standard hot 
rolled European wide flange I beams, i.e. HEA sections (from HEA 100 to HEA 
1000) for each column, beam and purlin seperately. The material used was steel 
S 355. 
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Figure 2: Optimal topology of the single-storey industrial building. 

     The optimization was carried out by a user-friendly version of the MINLP 
computer package MIPSYN, the successor of PROSYN [6] and TOP [19]. As an 
interface for mathematical modelling and data inputs/outputs GAMS (General 
Algebraic Modelling System), a high level language, was used [20]. The 
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Modified OA/ER algorithm and the two-phased optimization were applied, 
where GAMS/CONOPT2 (Generalized reduced-gradient method) [21] was used 
to solve NLP subproblems and GAMS/Cplex 7.0 (Branch and Bound) [22] was 
used to solve MILP master problems. 
     The optimization model contained 120 (in)equality constraints, 169 
continuous and 122 binary variables. The final optimal solution of 122,60 tons 
was obtained in the 4th main MINLP iteration. 
     The optimal result represents the mentioned optimal structure mass of 122,60 
tons, the obtained optimal topology of 14 portal frames an 14 purlins, see Fig. 2, 
and the calculated optimal standard sizes of columns, beams and purlins, see 
Fig. 3. 
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Figure 3: Optimal steel sections. 

6 Conclusion 

The paper presents the Mixed-Integer Non-linear Programming approach 
(MINLP) to structural optimization. The Modified OA/ER algorithm and the 
two-phase MINLP optimization strategy were applied. The optimization is 
performed by a user-friendly version of the MINLP computer package MIPSYN. 
Beside the optimal structure costs or mass, the optimal topology with the optimal 
number of structural elements, the optimal discrete/standard cross-sectional sizes 
are obtained simultaneously. The example, presented at the end of the paper, 
clearly show the efficiency of the proposed MINLP approach. 
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