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Abstract 

Classical Hashin–Shtrikman variational bounds are based on the assumption that 
all phases behave in a purely elastic and locally homogeneous manner.     
Hashin–Shtrikman principles, from which the bounds are derived, are extended 
in a paper by Procházka and Sejnoha (Applications of Mathematics, 2004). The 
extension consists of introducing eigenparameters (either eigenstrain or 
eigenstress) into the formulation. Moreover, these eigenparameters were used in 
the estimation of bounds with the result that elastic strain is in a certain relation 
with plastic strains. This appears to be a very restrictive condition (constraint) 
and a new approach will be presented in this paper based on additional estimates. 
In the classical approach of Hashin and Shtrikman the overall energies were 
compared with local energies (on the micro scale level). From this the 
procedure for evaluation of bounds on overall material properties involving 
eigenparameters begins. In our case it is possible to consider the eigenparameters 
as characterizations of plastic behavior of one or more phases in the composite 
structure. Following this idea, the eigenparameters can describe the current 
situation in the composite structure and involved in the estimates. In such a way, 
the eigenparameters can be considered as plastic strains or relaxation stresses, 
and then the properties of eigenparameters can be taken into consideration. 
Basically, the former approach of the paper by Hashin–Shtrikman still remains in 
the body of the presented derivation of the new principles. 
Keywords: extended Hashin–Shtrikman principles, bounds on overall properties, 
hereditary problems. 
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1 Introduction 

Eigenstresses and eigenstrains play a very important role in many branches of 
applied mechanics, e.g., in composites, geotechnics, concrete structures, etc. In 
previous papers, the authors have formulated an effective approach to the 
analysis and optimization of inhomogeneous bodies with prescribed boundary 
displacements or tractions and have used the transformation field analysis for 
relating the components of stress or strain tensors and of eigenstrains or 
eigenstresses. The transformation field analysis established by Dvorak and 
Procházka in [1] has been applied to the localization of stresses and strains in 
two-phase composites. The eigenstresses stood for relaxation stresses while 
eigenstrains represented plastic strains. This idea was extended in [2], where 
applications of a large scale of combinations of internal material situations using 
the boundary element method with eigenstress of composite structures were 
considered.  
     In [3] an interesting attempt at obtaining effective material properties of a 
nonlinear isotropic composite has been made, using the basic ideas of Hashin 
and Shtrikman, [4]. A new variational approach was proposed that provides the 
effective energy potentials of nonlinear composites in terms of the corresponding 
energy potentials for linear composites with the same microstructural 
distributions. The first application of the extended H–S principles appears in [5], 
where certain plasticity problems are solved under some assumptions. 
     Our approach is based on the idea of augmented Hashin–Shtrikman 
variational principles. This paper deals with the extended primary variational 
principle for nonhomogeneous bodies. By means of internal parameters, 
eigenstrains or eigenstresses, involved in H–S principles, it is possible to obtain 
new bounds on mechanical properties of the trial material, increase the bearing 
capacity of structures, and to minimize the stress excesses.    

2 Basic relations 

We start with basic relations that are valid in mechanics of continuum and are 
appropriate for our next considerations. A bounded domain is denoted by Ω , 

0, =∩∪≡ pupu ΓΓΓΓΓ  being its Lipschitz’s boundary, both representing 
the trial body. On uΓ the displacement vector },,{ 321 uuu=u  is prescribed, and 
on pΓ  the vector of tractions },,{ 321 ppp=p  is given. Recall the relation 
stresses–tractions on the boundary pΓ : jiji np σ= , where },,{ 321 nnn≡n is the 
outward unit normal to the boundary and ijij εσ ,  are components of stress and 
strain tensors, respectively.  
     Hooke’s law for anisotropic and inhomogeneous fields is introduced in the 
form  

)()()()( xxxx ijklijklij L λεσ += , )()()()( xxxx ijklijklij M µσε +=   (1) 
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where ijλ  are components of the eigenstress tensor, ijµ are the components of 
the eigenstrain tensor, x is a position at which the material relations are studied, 

ijklL are components of the material stiffness tensor and ijklM describes its 
compliance material tensor, both with the standard symmetry; the subscripts 

lkji ,,,  run the set {1, 2, 3},  
     Moreover, we have  

)(
2
1      , jminjnimijmnijmnklmnijkl IIML δδδδ +==     (2) 

where ijmnI  characterises the fourth-order unit tensor, ijδ is the Kronecker delta 
being equal to one for ji = and zero otherwise.  
     Note that for a homogeneous and isotropic material the material stiffness 
matrix has the form  

ijklklijijkl IL µδλδ 2+=      (3) 

where λ  and µ  are Lame’s constants. Instead of µ , the shear modulus G is 
sometimes introduced.  
     Comparing both equations (1), we get  

klijklij L µλ −=      ,  klijklij M λµ −=           (4) 

     Kinematic equations may be written as  
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     Note that displacements are said to be kinematically admissible if the relation 
(5) holds.  
     Eventually, static equations or equations of equilibrium yield 

0=
∂
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           (6) 

provided no volume weight forces are taken into account. The last relation has to 
be taken in the sense of distributions.  
     Note that one says that the stress tensor is statically admissible or its 
components are statically admissible, if statistical boundary conditions on pΓ  
are prescribed and (6) is fulfilled.  
     Substituting the kinematical equations into the equations of equilibrium leads 
to Lame’s equations for the unknown displacement vector u, which are written in 
the sense of distributions:  
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or alternatively  
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for a given field klµ , or klλ .  
     Recall that on the part uΓ of the boundary Γ the displacement vector u  is 
prescribed, and the traction field p  is given on pΓ . Assuming a smooth enough 
field Ω∈u , we can formulate a variational principle, which is equivalent to the 
equation (7) or (8):  

Lagrange's primary principle: For given tractions pΓ∈p  find the minimum 
value of the functional )()()( uuu eiu ΠΠΠ += on the set of kinematically 
admissible displacements, where  
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     Here iΠ  is the energy of internal forces, potential energy, whereas eΠ is the 
energy of external forces. W is the density of internal energy.  
     Assuming the validity of (5), the principle is equivalent to (1), or, if (1) and 
the boundary condition on uΓ are fulfilled, then the variational principle is 
equivalent to (5).  

3 Extended Hashin-Shtrikman variational principles 

In this section we extend the Hashin–Shtrikman variational principle [4], by 
introducing both the eigenstrain and eigenstress fields into the formulation. For 
the sake of simplicity assume that no body forces are present.  
     The idea of Hashin and Shtrikman consists of introducing new variables ijτ  
(components of polarization tensor) to get another free variable that may be used 
for “the best” estimation of bounds on overall material properties of 
nonhomogeneous and anisotropic media.  
     Let us consider again a bounded domain Ω  with its bounded Lipschitz’s 
boundary Γ and with subdomains iΩ , i = 1,…,n, describing local 
inhomogeneities.  
     Following the Hashin and Shtrikman idea, let us split the procedure into two 
steps. First, let 0

ijε  and 0
ijσ  be the small strain and the stress fields, respectively. 

These stresses and strains are related by the linear homogeneous isotropic 
Hooke’s law:  
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000
klijklij L εσ = ,       or      000

klijklij M σε =       (11) 

where 0
ijklL and 0

ijklM  are constant components of material stiffnesses and 
compliances, respectively. Subscripts in (11) run from 1 to 3. It is worth noting 
that the stresses 0

ijσ  are statically admissible, since linear elasticity is considered 
in the above comparison media of the trial body (the quantities in which are 

denoted by 0). Similarly, kinematic equations ( )(2
10
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to get the proper relation between the components of the strain tensor and the 
displacement vector. These conditions will be necessary in what follows. In this 
sense, the quantities with 0 are considered to be given.  
     In the second step a geometrically identical body is considered, which is 
anisotropic and inhomogeneous. Displacements iu , strains ijε and stresses ijσ are 
unknown and the generalized Hooke’s law including the eigenstresses ijλ is 
formulated in (1).  
     Similarly to the classical Hashin–Shtrikman principles, define the symmetric 
stress polarization tensor ijτ by  

ijklijklij L τεσ += 0         (12) 

     The definition of polarization tensors follows from a comparison of (12) and 
(1). Define also  

000         ,        , ijijijijijijijijij uuu σσσεεε −=′−=′−=′    (13) 

     Let us introduce the assumption that the surface displacements are given, so 
that 0=′iu  on the boundary. Then the variational principle can be formulated.  

4 Generalized Hashin–Shtrikman principles 

Total energy in a composite can be recorded in a primed system, see [4], 
involving polarization tensor ijτ and eigenstresses ijλ  as: 
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where 
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and other quantities are denoted as in [4]. It also holds a very important theorem: 
the functional U  attains its absolute maximum if ][L  is positive definite, and it 
attains its absolute minimum if 0MC + is negative semidefinite. Applying 
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successively unit surface displacements in basic directions on the unit cell we 
arrive at the equivalent expression to (14): 
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where A,B,α0, and β0 are material constants depending on fiber ratio, l and m are 
isotropic and lij and mij are deviatoric parts of eigenstress and eigenstrain tensors, 

0e  and 0
ije are the similar quantities for strains.  

5 Example: time dependent problem 

Introducing time dependent law we start with the extended Hooke’s law, which 
is in this case dependent on time: 

)()(2)()())(()( ttGtttLt rsrsrskkrsrsrs λεδελλεσ ++=+=   (16) 

     From (16) the inverse relation leads us to: 
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     The plasticity path is defined in dependence on time as; see [6] and [7]: 

)()()( ttt vpp εεµ += ,     (19) 

where ttAt np ))(()( σε =  is the plastic term and 
q

vp

B
tt

/1)()( 

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=
Hε  is the 

viscoplastic term, )(tH is the overloading in time t  and A , n , B , q  are 
material constants. 
     Hooke’s law in (17) and (18) can be written in dependence on time as: 
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     The time interval is divided into N  subintervals, for which values of )(iσ , 
)(iε  and )(iH  are prescribed. It appears that it is possible to define )(iH as the 

difference in the dynamical deviation of stresses from the stresses due to 
assumed constant load ))()(( ii sd σσ − . 

     From (21) relations for the calculation of coefficients )(),( ibia pp  in step 
i are derived: 
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where 
im

rs
i ss ,  are components of stresses and d

rshh,  are components of 
overloading, both in step i , and moreover aA , bA , n , aB , bB , q  are material 
characteristics, i  denotes the step (discretization of time t ). 

     If 
im

rs
i ss ,  are constant, then (22) turns to: 
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Remark: the exponent n  and multiplier A  are known from experiments.  
     If 1,1 == qn , then  (22) can be rewritten as: 
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     The estimates of bounds of 
i

K *  and 
i

G*  in step i  are given as: 
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     In Fig. 1 the application to two-phase material is illustrated. 
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Figure 1: Dependence of bounds 
i

G*
2  a 

i
G*

1  on time t  for 1110*2 −=bA  
and 1=n , and for 2.0,8.0 == phasematrix vv . 

6 Conclusions 

In the paper generalized H–S bounds on overall modules of a two phase 
composite were derived. In the plastic region, the lower bound on the shear 
modules is basically lowered under some conditions. The most common case is 
considered; one phase behaves as brittle, while the other is plastic. A large class 
of isotropic plastic rules can be involved in the study presented here. It is 
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obviously possible to derive dependence of intrinsic parameters of a concrete 
plastic rule and the multiplier of plastic strains with respect to the elastic ones. 
For example, Mises with hardening can be studied with the approach provided in 
this paper. Time dependency affecting material properties within a time period is 
taken into account and added to the model.  
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