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Abstract

A novel approach to the prediction of the nonlinear macroscopic response of
asphalt mixtures is presented. It combines the well established first order homo-
genization method and a concept of so called statistically equivalent periodic
unit cell that was only recently proposed. Such a unit cell allows us to take
into account a real microstructure of an asphalt mixture when searching for the
estimates of nonlinear macroscopic response. To that end, both the finite element
and the Fast Fourier Transform methods are examined. To enhance feasibility
of the solution of the underlying nonlinear problem, a two-step homogenization
procedure is proposed. Here, the effective material properties are first found for a
mastic asphalt, a composite consisting of a bitumen matrix and a fraction of small
particles. These properties are then introduced in place of the matrix in actual
unit cells. Several numerical examples are presented to show applicability of the
proposed approach.
Keywords: asphalt mixture, statistically equivalent periodic unit cell, homogeniza-
tion, Fast Fourier Transform, finite element method.

1 Introduction

The main objective of this contribution is to provide estimates of the effective
properties of asphalt mixtures shown in Fig. 1. A computational analysis taking
into account all geometrical details of a two-phase microstructure (stone aggre-
gates bonded to a bitumen matrix) would, however, be prohibitively expensive.
The search for an efficient computational scheme is therefore needed.

A relatively simple, yet reliable and efficient approach is proposed. It relies on
a popular uncoupled multi-scale homogenization technique taking advantage of
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(a) (b)

Figure 1: (a) A real microstructure of an asphalt mixture, (b) A binary image of an
RVE taken from the original color image.

the concept of a statistically equivalent periodic unit cell. To arrive at the desired
effective properties then requires completion of the following steps:

• Preparing a binary image of a real microstructure such as the one plotted in
Fig. 1(b). This step, however, goes beyond the present scope and will not be
addressed herein. Instead, the interesting reader is referred to [1].

• Construction of a suitable Representative Volume Element (RVE) from real
microstructures to enhance computational efficiency. This subject receives
our attention in Section 2.

• Formulation of a statistically equivalent periodic unit cell (SEPUC). This
issue will be briefly addressed in Section 3.1.

• Evaluation of the non-linear effective properties for the periodic unit cell.
This topic is discussed in Section 3.2.

2 Derivation of effective elastic moduli from the original
microstructure

This section is concerned with the derivation of the effective elastic properties from
the original microstructure. It will serve as a point of departure for generating the
statistically equivalent periodic unit cells on the one hand and as a source of data
to check the quality of the results obtained for artificial microstructures (SEPUCs)
in Section 3 on the other.

2.1 Construction of a representative volume element

Section 2.2 introduces a very robust numerical technique for the evaluation of the
effective elastic properties directly from the binary images of real microstructures.
Nevertheless, it still proves computationally very exhausting if applied to original
images with all details such as the one in Fig. 1(b). In [1], a procedure eliminating
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Figure 2: Examples of binary images of the original microstructure after eliminat-
ing stone fragments smaller than (in area): (a) 150 px, (b) 300 px, (c)
600 px, (d) 1200 px.

small fragments of stones up to a certain size to reduce the complexity of the
original microstructure was proposed. Several such RVEs are evident in Fig. 2.

To make sure that the eliminated small stones will still contribute to the overall
stiffness, a two step homogenization approach is needed. In such a case, the
original bitumen is replaced by a mastic asphalt that accounts for the removed
small stone fragments. The homogenized effective properties of the mastic are
derived from an independent homogenization step discussed in Section 2.3. A
suitable numerical technique based on classical micromechanics to carry out the
computational steps is outlined next.

2.2 Fast Fourier Transform (FFT)

In the absence of inelastic effects, the classical micromechanical schemes can be
identified with the following local constitutive relation

σ (x) = L(x)ε(x) = L0ε(x) + τ (x), (1)

where τ (x) = (L(x) − L0)ε(x) is the so called polarization stress and L0

represents the stiffness matrix of a certain homogeneous, generally anisotropic,
reference medium. If the polarization stress is known, the local strain field ε(x)

can be obtained via Green’s function �0 for a given reference medium in the form,
see e.g. [2],

ε(x) = E −
∫

�

�0(x − x′)τ (x ′) dx′. (2)

After inserting the polarization stress τ (x) into Eq. (2) we obtain the so called
periodic Lippmann Schwinger integral equation for a given reference medium as

ε(x) +
∫

�

�0(x − x′)(L(x ′) − L0)ε(x ′) dx′ = E. (3)

This equation can be solved by the following iterative procedure

εk+1(x) = E −
∫

�

�0(x − x′)(L(x ′) − L0)εk(x ′) dx′. (4)
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(a) As = 0.08A (b) As = 0.12A (c) As = 0.16A (d) As = 0.21A

Figure 3: PUC of mastic asphalt containing stone fragments smaller than (in area):
(a) 150 px, (b) 300 px, (c) 600 px, (d) 1200 px.

Table 1: Effective properties of mastic asphalt.

Stone Bitumen PUC (a) PUC (b) PUC (c) PUC (d)

Eeff MPa] 30000 3000 4110 4465 4817 5197

νeff [-] 0.20 0.35 0.31 0.31 0.32 0.32

Typically, the FFT (or rather its discrete version when dealing directly with binary
images) is employed to solve the above equation. Details on actual numerical
implementation can be found in [2].

2.3 Results

The effective elastic moduli derived for individual images in Fig. 2 using the FFT
method are plotted as columns with a checkerboard pattern in Fig. 4. Clearly,
the eliminated fragments of stones have a considerable impact on the predicted
effective properties. To avoid this unpleasant feature a two-step homogenization
approach is needed. Hence, the effective properties of a mastic asphalt composed
of a bitumen matrix and a corresponding fraction of the eliminated stones are
derived first assuming a simplified micromechanical model (a hexagonal periodic
cell (PUC)) in Fig. 3. The results are stored in Table 1. The effective properties
of the mastic asphalt are then used in place of the original bitumen when treating
individual RVEs in Fig. 2. The final results appear as dash-pattern columns in
Fig. 4.

It is obvious that a significant improvement can be reached when using modified
bitumen matrices. These results confirm the validity of this approach and support
the use of coarse RVEs in the derivation of a statistically equivalent periodic unit
cell presented next.
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Figure 4: Effective elastic modulus derived from images in Fig. 2.

3 Derivation of effective elastic moduli from the artificial
microstructure

Although considerable savings in computational time can be achieved with coarse
RVEs, the analysis employing original microstructures still presents a significant
challenge particularly in view of a large scale nonlinear analysis of multi-layered
rodes. A possible route that further contributes to the efficiency of the compu-
tational analysis is discussed next in conjunction with a statistically equivalent
periodic unit cell [3].

3.1 Construction of a statistically equivalent periodic unit cell

Suppose that the original microstructure can be replaced by a certain artificial
periodic unit cell that, from the microstructure point of view, statistically resembles
the real material system in terms of, e.g. the two-point probability function. Such
a unit cell can be defined by the following parameters: number of aggregates
having elliptical shape, size, position, orientation and aspect ratio of the axes

(a) (b) (c)

Figure 5: Examples of SEPUCs corresponding to a binary image in Fig. 2(d):
(a) SEPUC 6, (b) SEPUC 43, (c) SEPUC 37.
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Figure 6: Effective elastic modulus derived from SEPUCs in Fig. 5.

of individual ellipses. The size of stones is derived based on the cumulative
distribution function [1]. For example, if 10 stones are selected for a PUC then
the smallest stone corresponds to an average size of 10% of the smallest stones
determined from the cumulative distribution function. The next stone then reflects
the size of the subsequent 10% stones, etc. Examples of such unit cells are depicted
in Fig. 5.

These unit cells were derived by matching the two-point probability function of
the original microstructure, Fig. 2(d), and the SEPUC. The underlying optimiza-
tion problem was solved with the help of the evolutionary algorithm GRADE [5].
See also [3, 4] for other applications of genetic algorithm based solution strategies.

As typical of genetic algorithms based optimization procedures, each run
results in a unique SEPUC with a slightly different arrangement of stones, see
Fig. 5. It therefore remains to be confirmed that all cells provide the “same”
macroscopic response. Note that for the sake of efficiency the target microstructure
in Fig. 2(d) with modified bitumen properties (the last column in Table 1) was used
when generating artificial periodic microstructures. The corresponding effective
properties are represented by the first column in Fig. 6. The remaining columns
refer to the effective elastic modulus for the selected SEPUCs (100 such cells
were generated). Although slightly different in their geometrical details they all
provide nearly the same macroscopic response almost identical to the original
microstructure.

In most practical applications, however, the mastic asphalt is typically loaded
beyond the elastic regime. The issue, whether the geometrical invariance of
SEPUCs outlasts even for a non-linear response should be examined. For simplic-
ity, we limit our attention to finite element simulations presented in the framework
of the first-order homogenization theory. The theoretical formulation is outlined
next. The corresponding results are discussed in Section 3.3.
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3.2 First order homogenization in view of finite element analysis

Consider an RVE given in terms of a SEPUC in Fig. 2. The stepping stone when
deriving the effective material properties of a composite aggregate is provided
by Hill’s lemma, which for compatible strain and equilibrated stress fields reads,
see [3] for further details,

〈σ (x) : ε(x)〉 = 〈σ (x)〉 : 〈ε(x)〉 = � : E, (5)

where � and E represent the prescribed overall uniform stress and strain fields,
respectively. The macroscopic constitutive relations are provided by

� = 〈σ (x)〉 = 〈L(x)(ε(x) − µ(x))〉 = L(E − µ), (6)

where µ(x) and µ are the local and macroscopic eigenstrain vectors, representing
the non-linear viscoelastic effects developed in the matrix phase. These are
derived from the generalized Leonov model, which is assumed here to represent
the behavior of the mastic asphalt. Details regarding the implementation of the
generalized Leonov model are provided in [6]. Next, with the help of Eqs. (5) and
(6), we write the average Lagrange variational principle in the form

W(E) = 1

2V

∫
V

ε(u(x))TL(x)(ε(u(x)) − µ(x)) dx

≤ 1

2V

∫
V

ε(v(x))TL(x)(ε(v(x)) − µ(x)) dx, (7)

where u(x) represents the solution of the above problem and v(x) is any kinemat-
ically admissible displacement field. To introduce a kinematically admissible field
we split the local displacements v(x) into average and fluctuation parts such that

v(x) = Ex + v∗(x), (8)

where the fluctuation part v∗ enters Eq. (8) as a consequence of the presence of
heterogeneities and has to disappear upon volume averaging. This condition is met
for any periodic displacement field with the period equal to the size of the unit cell
under consideration.

Finally, after taking the variation of Eq. (7) with respect to u(x) we arrive,
in conjunction with standard Finite Element discretization, at the system of
equilibrium equations in the form

Ku∗ = f , (9)

where

K =
∑

e

Ke where Ke = 1

�

∫
e

BTLeB d�e,

f =
∑

e

f e where f e = − 1

�

∫
e

BTLe(E + µ(x)) d�e, (10)
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(a) (b)

Figure 7: Macroscopic non-linear response from SEPUCs in Fig. 5: (a) Stress-
strain curve, (b) Variation of equivalent local strain.

where � is the cell area. Owing to the non-linear effects, this system of equations
must be solved incrementally.

3.3 Results

As an example we considered a problem of a unit cell loaded by the prescribed
constant rate of the macroscopic shear strain. The elastic parameters of the matrix
phase (the entire stiffness matrix) were those used for the matrix phase of the
RVE in Fig. 2(d), recall also the last column in Table 1. Since the experimental
program for the derivation of non-linear properties of various bitumen asphalts
is currently under way, we adopted (noticing a similar elastic behavior) the same
non-linear material properties for the generalized Leonov model that we used for
the polymeric matrix in [1].

The resulting macroscopic stress-strain curves are plotted in Fig. 7(a) for the
three SEPUCs in Fig. 3. The results are rather appealing, since any of the cells can
actually be used, if we are not interested in the particular distribution of local fields
within the cell. To compare these results with the response derived from original
RVEs requires an extension of the FFT method to non-linear viscoelasticity. This
is the subject of our present effort.

4 Conclusion

This paper presents a summary of the preliminary work on asphalt mixtures. It
concentrates on the morphological description of actual microstructure on the
one hand and on the effect of the elimination of small stones from the original
complex microstructure on the other. While the total number of stones eliminated
is relatively high their volume fraction when compared to the total volume of
stones is negligible. The effective properties are, however, considerably affected.
To compensate for the loss of microstructural details due to stone elimination
needed in the optimization process the two-step homogenization procedure is
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considered. The results presented in Sections 2.3 and 3.3 confirm applicability
of this approach in both the elastic and inelastic regimes.
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