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Abstract 

In the classic laminate theory, a polymer-matrix laminate is modelled as a thin 
anisotropic plate of a constant thickness, subject to the Kirchhoff–Love 
kinematical hypothesis. However, this hypothesis is mostly unsatisfied because 
of relatively low values of the shear moduli. The laminate elastic response is 
better simulated under the Reissner–Mindlin kinematical hypothesis. 
Reformulation of the classic laminate theory to the first – order shear – 
deformation theory is very sophisticated but useless from the point of view of the 
Finite Element Method. This paper formulates the exact stiffness theory of a 
regular cross-ply polymer-matrix laminate, denoted with the symbol CP xFRP, 
of the plies’ configuration [0/90]nS, 4≥n . The plies, made of a specified woven 
fabric, are repeatable with respect to their thickness and microstructure. This 
type of laminates is widely used in engineering practice. On the mesomechanics 
level, a regular CP xFRP laminate is modelled as a homogeneous orthotropic 
plate. The theory employs respective boundary-value problems related to a 
representative volume element and the most advanced variant of the exact 
stiffness theory of a unidirectional xFRP composite. The final results are 
presented in the form of analytic formulae for nine effective elastic constants of 
the laminate, describing an orthotropic model of the homogenized CP xFRP 
laminate. A numerical example of homogenisation is also presented. 
Keywords: cross-ply polymer-matrix laminates, homogenisation, exact stiffness 
theory, linear elasticity, orthotropy. 
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1 Introduction 

In the classic laminate theory, a laminate is modelled as a thin anisotropic plate 
of a constant thickness, subject to the Kirchhoff–Love kinematical hypothesis 
[1–3]. The classic laminate theory assumes an arbitrary plies’ configuration in 
reference to thickness, lamination angle and microstructure. Moreover, there are 
assumed planar stress states in the plies and external load applied to the 
midplane. The laminate remains in the normal isothermal conditions. Each ply is 
homogenized and modelled as a monotropic solid body. Arbitrary configuration 
of the plies induces coupling between the disk state and the plate state. The 
classic laminate theory results in a system of differential equations of static 
equilibrium of an anisotropic plate. 
     In practice, a polymer-matrix laminate is a thin plate. However, the Kirchhoff 
– Love kinematical hypothesis is mostly unsatisfied because of relatively low 
values of the shear moduli. The laminate elastic response is better simulated 
under the Reissner–Mindlin kinematical hypothesis also termed as Hencky–
Mindlin hypothesis [4]. According to this hypothesis a straight line perpendicular 
to the midplane is inextensible, remains straight, and rotates but does not remain 
perpendicular to the tangent of the deformed midplane. Reformulation of the 
classic laminate theory to the first – order shear – deformation theory is very 
sophisticated [5] but useless from the finite element method’s (FEM) point of 
view. 
     Nowadays, the FEM is the only effective tool for simulation of the elastic 
behaviour of laminate structures with shear deformation taken into consideration. 
Preprocessors of CAE systems, such as MSC, ADINA, ANSYS, COSMOS, 
ABAQUS, require values of all effective elasticity constants (EECs) of an 
anisotropic material modelling a laminate. These values can be identified 
experimentally, but theoretical analytical prediction of the EECs by respective 
stiffness theory is much more cheaper, faster and more important in mechanics 
of laminates. 
     The paper formulates a new exact stiffness theory of a regular cross-ply 
laminate, denoted with the symbol CP xFRP, of the plies’ configuration [0/90]nS, 

4≥n . The plies, made of a specified woven fabric, are repeatable with respect 
to their thickness and microstructure. This type of laminates is widely used in 
engineering practice. On the mesomechanics level, a regular CP xFRP laminate 
is modelled as a homogeneous orthotropic plate. All EECs of the laminate have 
been determined analytically. 

2 Assumptions and standard constitutive equations of linear 
elasticity of the homogenized laminate 

A regular CP xFRP laminate is created by a stack of plies of the [0/90]nS , 4≥n  
configuration. Each ply is a UD xFRP composite, i.e. a thermoset reinforced 
with long fibres aligned unidirectionally. The following assumptions are valid to 
each ply [6]: 
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• a UD xFRP composite is a two – phase material, 
• there are considered quasi-static isothermal processes, at room temperature, 
• both constituents, i.e. a matrix and a fibre, are homogeneous, 
• stresses are restricted to the levels protecting linear behaviour of the 

constituents, 
• a matrix is a thermoset (chemically hardening plastic) made of a crosslinked 

polymer, modelled as an isotropic material, 
• a fibre is modelled as a monotropic material (isotropic, in particular), 
• fibres have identical solid circular cross-section; they are rectilinear and 

embedded uniformly in the matrix, in a hexagonal scheme, 
• the matrix – fibre interface is a cylindrical surface, 
• preparation of the fibres protects perfect bonding of the fibres to the matrix, 
• residual stresses resulting from the manufacturing process are neglected. 
     Under these assumptions, a UD xFRP composite is modelled macroscopically 
as a homogeneous monotropic (transversely isotropic) material, with the 
monotropy direction coinciding the fibres’ alignment direction (the laminate 
moulding direction). Each ply is described in the 321 xxx  - Cartesian coordinate 
system, where 1x - axis coincides the laminating direction, and 32xx  is termed as 
a transverse isotropy plane. The constituents of each ply are fully characterized 
by the following elasticity constants: ν,E  (a Young’s modulus, a Poisson’s ratio 

of an isotropic matrix), 12213221 ,,,, GEE νν  (longitudinal and transverse 
Young’s moduli, Poisson’s ratios in respective planes, a shear modulus in the 
monotropy plane of a monotropic fibre). A ply is also described by a real fibre 
volume fraction f.  
     A monotropic material modelling the homogenized ply is described by five 
independent EECs, i.e. 12213221 ,,,, GEE νν  (effective longitudinal and 
transverse Young’s moduli, effective Poisson’s ratios in respective planes, an 
effective shear modulus in the monotropy plane). The EECs are determined 
analytically by the exact stiffness theory of a UD xFRP composite. The most 
advanced variant of this theory is presented in  [6]. 
     A regular CP xFRP laminate is modelled by a homogeneous orthotropic 
material described in the xyz  - Cartesian coordinate system. Axes yx,  coincide 
the lamination directions of respective plies, whereas axis z  is perpendicular to 
the xy  midplane. Standard constitutive equations of linear elasticity of the 
homogenized regular CP xFRP laminate have the following form [1–4] 

Sσε = ,                 (1) 

where ),,,,,(col),,,,,,(col xyxzyzzyxxyxzyzzyx γγγεεεσσσσσσ == εσ  are 
stress and strain vectors in the xyz  - system, with the following components: 

zyx σσσ ,,  - normal stresses, xyxzyz σσσ ,,  - shear stresses, zyx εεε ,,  - 

directional strains, xyxzyz γγγ ,,  - shear strains. The elasticity compliance matrix 
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expressed in terms of the EECs of the homogenized laminate, i.e. zyx EEE ,,  – 

Young’s moduli in the zyx ,,  directions, yxzxzy ννν ,,  – Poisson’s ratios in 

respective planes, xyxzyz GGG ,,  – shear moduli in respective planes. 
     For a regular CP xFRP laminate only six EECs take different values, i.e. 

xyxzyxzxzx GGEE ,,,,, νν . The remaining constants equal 

xzyzzxzyxy GGEE === ,, νν  and result in 554423132211 ,, SSSSSS === . 

     For the plies with 0o laminating direction one obtains zxyxxx === 321 ,, , 
while the plies with 90o laminating direction are defined by the relations 

zxxxyx === 321 ,, . 

3 The exact stiffness theory of a regular CP xFRP laminate 

3.1 A representative volume element 

There is considered a representative volume element (RVE) cut from the whole 
laminate at point )0,,( yxA , as shown in Fig. 1 for exemplary value .4=n  
Before homogenization the RVE is a stack of plies of the [0/90]nS , 4≥n  
configuration of cubicoidal global geometry. After homogenization, the RVE is a 
homogeneous orthotropic cubicoid of dimensions h××11  where h is a thickness 
of the laminate. The orthotropy directions coincide the zyx ,,  directions, 
respectively. 
     The RVE is considered in selected boundary-value problems (BVPs) under 
the following requirements: 
• elastic behaviour of the unhomogenized and homogenized RVE must be 

compatible with the elastic behaviour of the whole laminate, 
• the unhomogenized and homogenized RVE satisfy the compatibility 

conditions put on the stress and displacement states. 
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     In further considerations, 'a  denotes a quantity related to the plies of 0o 
arrangement, "a  - a quantity related to the plies of 90o arrangement, and a – a 
quantity related to the homogenized laminate. 
 

 

Figure 1: A representative volume element for 4=n . 

3.2 BVP 1: Uniform tension in the x direction 

Following the behaviour of the whole laminate, the RVE walls remain planar. 
BVP 1 is related to the constrained RVE, namely the walls parallel to the xz  
plane are unmovable in the y direction. The shear deformations vanish. The 
stress and strain components of the homogenized RVE equal 

.0,0,,0,0, ≠===≠= zyxzyx εεεεσσσσ            (4) 

     After inserting eqn (4) into eqn (1)1,2,3, one obtains constitutive equations 
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which can be transformed to the form 
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     Before homogenization, the stress and strain components in each ply of 0o 
orientation equal 
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     Inserting eqn (7) into eqn (1)1,2,3 results in constitutive equations 
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which can be transformed to the form 
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     Before homogenization, the stress and strain components in each ply of 90o 
orientation equal 
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     Inserting eqn (10) into eqn (1)1,2,3 results in constitutive equations 
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which can be transformed to the form 
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     In BVP 1, the RVE satisfies the following compatibility conditions: 
     a) compatibility of the stress resultant in the x direction: 
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     b) compatibility of the stress resultant in the y direction: 
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     c) compatibility of the elongation of the RVE in the z direction: 
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     Equations (13–15) can be rewritten in the form 

zzzyyyxx εεεσσσσσσ 2"',2"',2"' =+=+=+  .               (16) 

     Taking into account eqns (6), (9), (12), one transforms eqn (16) to the final 
form 
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3.3 BVP 2: Uniform tension in the z direction 

Following the behaviour of the whole laminate, the RVE walls remain planar. 
BVP 2 is related to the constrained RVE, i.e. vertical walls are unmovable in the 
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x and y direction respectively. The shear deformations vanish. The stress and 
strain components of the homogenized RVE equal 

.,0,0,,,0 εεεεσσσσσ =====≠ zyxzxyx            (18) 

     The RVE satisfies the compatibility condition put on the elongation of the 
RVE in the z direction, i.e. 
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2
'

2
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which can be reduced to the form 

εε ='z   .                            (20) 

     Performing the homogenization procedure analogous to that for BVP 1 (see 
Section 3.2), one obtains the final relation 

)1(
21

)1(
)1(21 2

12212

2
32321221

yxx

zx

z EEE ν
ν

νν
νννν

−
−=

−
−+−

  .                      (21) 

3.4 Prediction of constants yxzxzx EE νν ,,,  

     Equations (17), (21) constitute a set of four nonlinear algebraic equations with 
unknowns yxzxzx EE νν ,,, . One can rewrite them in the form 
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     The analytical solution of eqn (22) has the form 
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3.5 BVP 3: Pure shear in the xz plane 

Following the behaviour of the whole laminate, shear deformation of the RVE 
before and after homogenization takes the form shown in Fig. 2. Shear angles 
related to plies of 0o and 90o orientation are different and independent. The 
horizontal walls of the RVE remain planar. The strength task is related to the 
unconstrained RVE. The bulk deformations vanish. 
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     The stress and strain components of the homogenized RVE equal 
., γγτσ == xzxz                         (25) 

     Inserting eqn (25) into eqn (1)5 results in 

τγ
xzG

1
= .                               (26) 

     Before homogenization, the stress and strain components in each ply of 0o 
orientation equal 

.', 1212 γγτσ ==                             (27) 

     After inserting eqn (27) into eqn (1)6, one obtains the physical relation 

τγ
12

1'
G

= .                              (28) 

 

Figure 2: Pure shear of the RVE in the xz plane: a) distribution of shear 
stresses; b) deformation of the unhomogenized RVE; c) 
deformation of the homogenized RVE. 

     Similarly, the stress and strain components in each ply of 90o orientation 
equal 

.", 2323 γγτσ ==                              (29) 

     Inserting eqn (29) into eqn (1)4 gives the physical relation 
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     The compatibility condition is put on the horizontal shift of the top wall of the 
RVE, i.e. 

hhh γγγ =+
2

"
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     Equation (31) can be rewritten as 
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γγγ 2"' =+   .                           (32) 

     Inserting eqns (26), (28), (30) into eqn (32) results in the equation  

xzGGG
211

2312
=+                                   (33) 

giving a shear modulus in the xz plane, i.e. 

2312

23122
GG
GGGxz +

=                         (34) 

3.6 BVP 4: Pure shear in the xy plane 

In the horizontal plane, both groups of the plies are described by the same shear 
modulus 12G . Shear deformations of the unconstrained RVE before and after 
homogenization are identical – the cubicoid metamorphoses into parallelepiped. 
It results in the simple relation 

12GGxy =   .                             (35) 

4 An example of homogenization of the specified laminate 

Based on the exact stiffness theory of UD xFRP composites [6] and the exact 
stiffness theory of regular CP xFRP laminates presented in this study, the authors 
have written a computer programme in PASCAL for predicting the ECCs of 
these materials. 
     As an example, there is considered a regular CP U/E53 laminate of [0/90]nS, 

4≥n  configuration. The matrix (E53 thermoset) is made of Epidian 53 epoxide 
resin and reinforced with UTS 5631 carbon fibres produced by Tenax Fibers. 
The elasticity constants of the constituents equal [7] 
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The real fibre volume fraction equals 50.0=f . 
     The EECs of a single ply, calculated according to the stiffness theory 
presented in [6], equal 
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     The EECs of the CP U/E53 laminate, calculated according to the stiffness 
theory presented in this study, equal 
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5 Final conclusions 

The study concerns regular CP xFRP laminates, i.e. a stack of plies of [0/90]nS, 
4≥n  configuration. Each ply is a UD xFRP composite, i.e. an isotropic 

thermoset reinforced with long monotropic fibres packed unidirectionally in a 
hexagonal scheme. The plies are identical with respect to their thickness and 
microstructure. The considerations are limited to stress levels protecting 
geometrically and physically linear elastic behaviour of the material.  
     A new exact stiffness theory of a regular CP xFRP laminate has been 
formulated. Effective elasticity constants of the homogenized orthotropic 
laminate have been derived analytically from respective boundary-value 
problems related to the representative volume element of the material. A 
numerical example of homogenization of the specified laminate is attached as 
well. 
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