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Abstract 

Recent rheological experiments performed on cross-ply laminates have pointed 
out that polymer-matrix laminates may exhibit valuable creep shear strains. So 
far, a problem of viscoelastic modelling has been developed only for UD xFRP 
composites, i.e. thermosets reinforced with long fibres aligned unidirectionally. 
In the modelling, the most advanced rheological model of thermosets, denoted 
with the symbol HWKK/H, has been employed. This model is capable of 
modelling short-, moderate- and long-term rheological processes. In this study, 
the analytical approach developed for UD xFRP composites has been extended 
on a regular cross-ply polymer-matrix laminate, denoted with the symbol CP 
xFRP, of the [0/90]nS, 4≥n  plies’ configuration. The plies, made of a specified 
woven fabric, are repeatable with respect to their thickness and microstructure. 
On the micromechanics level, each ply is modelled as a linearly viscoelastic 
monotropic continuum with the monotropy axis coinciding the direction of 
fibres’ alignment. A regular CP xFRP laminate is modelled as a homogeneous 
orthotropic continuum. Standard and inverse viscoelasticity equations of an 
orthotropic solid body modelling a homogenized CP xFRP laminate are 
formulated and analytic algorithms for determination of elasticity and 
viscoelasticity constants are developed. The calculation algorithms have been 
computerized and used to calculate the viscoelasticity coefficients of the 
specified CP CFRP laminate. 
Keywords: cross-ply polymer-matrix laminates, linear viscoelasticity, standard 
constitutive equations, inverse constitutive equations, long-term creep 
coefficients, long-term relaxation coefficients, elastic–viscoelastic analogy 
principle. 
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1 Introduction 

Recent rheological experiments performed on cross-ply laminates have pointed 
out that polymer-matrix laminates may exhibit valuable creep shear strains [1]. 
So far, a problem of viscoelastic modelling has been solved only for UD xFRP 
composites, i.e. thermosets reinforced with long fibres aligned unidirectionally 
[2, 3]. Viscoelastic modelling presented in [2, 3] employs the most advanced 
rheological model of thermosets, denoted with the symbol HWKK/H, capable of 
modelling short-, moderate- and long-term rheological processes. 
     In this study, the analytical approach presented in [2, 3] will be developed on 
a regular cross-ply laminate, denoted with the symbol CP xFRP, of the plies’ 
configuration [0/90]nS, 4≥n . The plies, made of a specified woven fabric, are 
repeatable with respect to their thickness and microstructure. This type of 
laminates is widely used in engineering practice [4]. 

2 Assumptions, coordinate systems and sets of 
elasticity constants 

A regular CP xFRP laminate is manufactured as a stack of plies of the [0/90]nS, 
4≥n  configuration. Each ply is a UD xFRP composite. On the micromechanics 

level, a UD xFRP composite is modelled as a linearly viscoelastic monotropic 
continuum with the monotropy axis coinciding the direction of fibres’ alignment 
[2]. The following assumptions are adopted: 
• each ply is a two-phase material, 
• there are considered quasi-static isothermal processes in the normal 

conditions, i.e. the processes belonging to the transition regime under the 
glass transition temperature, 

• both constituents, i.e. a matrix and a fibre, are homogeneous, 
• stresses are restricted to the levels protecting linear behaviour of the 

constituents, 
• a matrix is a chemically hardening plastic made of a crosslinked polymer, 

modelled as a viscoelastic isotropic material, described by the HWKK/H 
rheological model [5], 

• a fibre is modelled as an elastic monotropic material (isotropic, in particular), 
• fibres have identical solid circular cross section; they are rectilinear and 

embedded uniformly in the matrix, in a hexagonal scheme, 
• the matrix–fibre interface is a cylindrical surface, 
• preparation of the fibres protects perfect bonding of the fibres to the matrix, 
• residual stresses resulting from the manufacturing process are neglected, 
• the Boltzmann superposition principle is satisfied. 
     Each ply is described in the 321 xxx  – Cartesian coordinate system with 1x  – 
a monotropy axis, and 32xx  – a transverse isotropy plane. The constituents are 
characterized by the following elasticity constants: ν,E  (a Young’s modulus 
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and a Poisson’s ratio of an isotropic matrix), 12213221 ,,,, GEE νν  (longitudinal 
and transverse Young’s moduli, Poisson’s ratios in respective planes and a shear 
modulus in the monotropy plane of a monotropic fibre). The composite is also 
described by the real fibre volume fraction f.  
     A monotropic continuum modelling the homogenized ply is described by 
five independent effective elasticity constants (EECs), i.e.: 12213221 ,,,, GEE νν  
(effective longitudinal and transverse Young’s moduli, effective Poisson’s ratios 
in respective planes, an effective shear modulus in the monotropy plane). These 
constants are derived with high accuracy, in terms of elasticity constants of the 
constituents and of the fibre volume fraction, by the exact stiffness theory 
summarized in [6].  
     On the mesomechanics level, a regular CP xFRP laminate can be modelled as 
a homogeneous orthotropic continuum, [7], described in the xyz  - Cartesian 
coordinate system. Axes yx,  coincide the lamination directions of respective 
groups of plies, whereas the z  axis is perpendicular to the xy  midplane.  
     For shortening, the symbols LEC and LVC are introduced, respectively 
denoting constitutive equations of linear elasticity and viscoelasticity.  

3 Standard and inverse LEC equations of CP xFRP 

Standard LEC equations of an orthotropic solid body modelling the 
homogenized regular CP xFRP laminate have the following form [4, 6] 

Sσε = ,                    (1) 

where ( ) ( )xyxzyzzyxxyxzyzzyx γγγεεεσσσσσσ ,,,,,col,,,,,,col == εσ  are 
stress and strain vectors in the xyz  – system, with classic components: 

zyx σσσ ,,  – normal stresses, xyxzyz σσσ ,,  – shear stresses, zyx εεε ,,  – 

directional strains, xyxzyz γγγ ,,   – shear strains. The elastic compliance 
matrix S contains the following well-known elasticity compliances 
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expressed in terms of the EECs of the homogenised laminate, i.e.         
zyx EEE ,,  – Young’s moduli in the zyx ,,  directions, yxzxzy ννν ,,  –   

Poisson’s ratios in respective planes, xyxzyz GGG ,,  – shear moduli in     
respective planes. For a regular CP xFRP laminate only six EECs have     
different values, namely xyxzyxzxzx GGEE ,,,,, νν . The remaining constants equal 

xzyzzxzyxy GGEE === ,, νν . 

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 97,
 www.witpress.com, ISSN 1743-3509 (on-line) 

High Performance Structures and Materials IV  15



     Based on eqns. (1), (2), inverse LEC equations of an orthotropic solid body 
have the following matrix form [4] 

Cεσ =   ,                        (3) 

where the elastic stiffness matrix 1−= SC  contains six independent elasticity 
moduli calculated from the formulae suitable in further considerations, i.e. 
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4 Formulae describing EECs of a regular CP xFRP laminate 

The exact stiffness theory of a regular CP xFRP laminate is formulated in [7]. 
This theory gives the following final set of analytical formulae predicting EECs 
of this type of laminates: 
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5 Calculation of the exact complex compliances of CP xFRP 

Complex compliances related to steady-state harmonic processes play a principal 
role in viscoelastic modelling of xFRP laminates [2, 3]. The exact complex 
compliances of a homogenized regular CP xFRP laminate can be calculated 
analytically using the elastic–viscoelastic analogy principle. Calculating the 
exact complex compliances of a CP xFRP laminate will employ the exact 
complex compliances of a UD xFRP composite obtained in [2]. 
     Five independent elastic compliances of a UD xFRP composite have been 
expressed in terms of the elastic shear compliance of a viscoelastic isotropic 
polymer matrix, GSb 21=  with the shear modulus ( )[ ]ν+= 12EG , i.e. 
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( ) ,bij SS  55,23,12,22,11=ij  The elastic–viscoelastic analogy principle gives 

the exact complex compliances ( ) ( ) ( ) ( )][i *"'* pSSpSpSpS bijijijij =+= , 

55,23,12,22,11=ij . Symbol p denotes circular frequency, 1i −= , whereas 

( )pSb
*  is a complex shear compliance of the matrix, determined in [2] for the 

HWKK/H rheological model. Taking into consideration eqns (2), (5), (6), six 
independent elastic compliances of a regular CP xFRP laminate can be expressed 
in terms of the elastic compliances ( ) 55,23,12,22,11, =ijSS bij , in the form 
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where 
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     Replacing elastic compliances ijS  in eqns (7), (8) by complex compliances 

( )pSij
* , 55,23,12,22,11=ij , results in the exact complex compliances of a 

regular CP xFRP laminate, i.e. 

( )[ ] ( )[ ] ( )[ ] 66,55,13,12,33,11,i "
e

cp'
e

cp*cp =+= ijpSpSpS ijijij               (9) 

6 Standard and inverse LVC equations of CP xFRP 

Following the considerations presented in [2], one can formulate standard LVC 
equations of the homogenized regular CP xFRP laminate, satisfying the 
assumptions adopted in Section 2, in the following form 

( ) ( ) ( )ttt σSε ⊗=
~ ,             (10) 

where ( ) ( )tt εσ ,  are stress and strain vectors vs. time variable t, and ( )tS~  is a 
viscoelastic compliance matrix containing six independent viscoelastic 
compliances 
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with 66,55,13,12,33,11=ij  and 
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     The symbols used in eqns (10)–(12) denote: ⊗  – a convolution operator, 
( )00 ;τtF  – a fractional exponential function ( )05.0 ;τtΦ  [8], ( )itF τ;  – a normal 

exponential function ( )it τ;1Φ  [8], 210 ,, ωωω  – long-term creep coefficients 
describing the HWKK/H rheological model of the matrix, 210 ,, τττ  – retardation 
times ( 210 τττ <<<< ) describing the HWKK/H rheological model of the matrix, 

66,55,13,12,33,11,cp =ijSij  – elastic compliances of the CP xFRP laminate, 
66,55,13,12,33,11, =ijijα  – relative long-term creep coefficients (RLTC) 

dependent of micro- and meso-structure of the laminate as well as of the 
viscoelastic properties of the matrix. 
     An analytical method for calculating RLTC coefficients for a UD xFRP 
composite has been presented in [2]. The method adopts the exact and 
approximate complex compliances of the composite and the elastic–viscoelastic 
analogy principle. In this study, the method developed in [2] will be extended 
onto regular CP xFRP laminates. 
     Based on eqns (11), (12) the approximate (predicted) complex compliances of 
the laminate are described by the formulae 
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where [8] 
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     The RLTC coefficients ijα  are derived from compatibility conditions put on 
the storage compliances at 0=p . The final analytical formulae have the form 
[2] 

( )[ ]{ } 66,55,13,12,33,11,101 cp'
e

cp =−= ijSS ijijij ω
α ,              (15) 

where 210 ωωωω ++=  is the total long-term creep coefficient for the matrix.  
     The errors of fit of the predicted complex compliances to the exact complex 
compliances constitute the measure of modelling accuracy. The relative errors 
are defined by the formulae [2] 
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where nkpk ,...,2,1, = , are the collocation points selected uniformly in the 
interval [ ]maxmin , ppp ∈  in a logarithmic scale of frequency p.  
     Following the considerations presented in [2] and eqns (3), (4), inverse LVC 
equations of the homogenized regular CP xFRP laminate, satisfying the 
assumptions adopted in point 2, are predicted in the following form 

( ) ( ) ( )ttt εCσ ⊗=
~              (17) 

where ( )tC~  is a viscoelastic stiffness matrix of structure analogous to ( )tS~ , 
containing six independent viscoelastic moduli 
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     The symbols used in eqns (18) denote: 66,55,13,12,33,11,cp =ijCij  – elastic 
moduli defined by eqns (4), 210 ,, ηηη   – long-term relaxation coefficients 
describing the HWKK/H rheological model for the matrix [3], 210 ,, θθθ  – 
relaxation times ( 210 θθθ <<<< ) describing the HWKK/H rheological model 
for the matrix [3], 66,55,13,12,33,11, =ijijβ  – relative long-term relaxation 
coefficients (RLTR) dependent of micro- and meso-structure of the laminate as 
well as of the viscoelastic properties of the matrix. An analytic algorithm for 
conversion of the standard viscoelasticity constants 210 ,, ωωω , 210 ,, τττ  into the 
inverse viscoelasticity constants 210 ,, ηηη , 210 ,, θθθ  is presented in [2]. 
     An analytical method for calculating RLTR coefficients for a UD xFRP 
composite has been developed in [3]. The method adopts the exact and 
approximate complex moduli of the composite and the relation between the 
complex compliance matrix ( )p*S  and the complex stiffness matrix ( )p*C . The 
relation between the complex compliance matrix and the complex stiffness 
matrix  

( ) 1** ][)( −= pp SC                                      (19) 
gives the exact complex moduli 
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     The RLTR coefficients 66,55,13,12,33,11, =ijijβ , are derived by equating 
the approximate and exact storage moduli at frequency 0=p . The final 
formulae have the form [3] 

( )[ ]{ } 66,55,13,1233,11,011 '
e =−= ijCC ijijij

cpcp

η
β                (21) 

where 210 ηηηη ++=  is the total long-term relaxation coefficient of the matrix. 
     The relative fit errors for the approximate and exact complex moduli are 
defined analogically to eqn (16). 

7 A numerical example 

A regular CP CFRP laminate of 4,]90/0[ S ≥nn  configuration, denoted with the 
symbol CP U/E53, is examined. Each ply is the UD U/E53 composite, 
considered previously in [2, 3]. The matrix, made of Epidian 53 epoxide resin, is 
reinforced with UTS 5631 carbon fibres produced by Tenax Fibers. The 
elasticity and viscoelasticity constants of the matrix equal [2, 3] 
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     The elasticity constants of a monotropic UTS 5631 carbon fibre equal [2, 3] 

GPa6.10,11.0,36.0,GPa6.6,GPa234 12213221 ===== GEE νν . 

     The real fibre volume fraction equals 50.0=f . 
     The algorithms for calculation RLTC and RLTR coefficients have been 
programmed in Pascal. For the CP U/E53 laminate one obtains the effective 
elasticity constants and the RLTC and RLTR coefficients of the following values 
(given here with technical accuracy): 
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     The exemplary diagram presenting the selected storage and loss compliance 
of the laminate vs. circular frequency p in a semi-logarithmic scale is shown in 
Fig. 1. The fit errors do not exceed 0.42%. Owing to very small fit errors, the 
diagrams reflect both the exact and predicted compliances. 
     The diagrams of the selected storage and loss modulus of the CP U/E53 
laminate vs. circular frequency p are shown in Fig. 2. The fit errors do not 
exceed 0.61%. Owing to very small fit errors, the diagrams reflect both the exact 
and predicted moduli. 
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Figure 1: The relative storage and loss compliances of the CP U/E53 for 
55=ij . 

 

Figure 2: The relative storage and loss moduli of the CP U/E53 for 55=ij . 

8 Final conclusions 

The study formulates a new approach to viscoelastic modelling of regular cross-
ply polymer-matrix laminates. The matrix is a viscoelastic isotropic material 
described by the HWKK/H rheological model, while the fibres are made of a 
monotropic elastic material. There are introduced the relative long-term creep 
coefficients and the relative long-term relaxation coefficients, mutually 
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convertible. A number of viscoelasticity constants of regular cross-ply polymer-
matrix laminates has been reduced to minimum. The sets of RLTC and RLTR 
coefficients are calculated fully analytically via employing the exact stiffness 
theory of the laminate, the elastic–viscoelastic analogy principle and the relations 
between the viscoelastic compliance and viscoelastic stiffness matrices. 
     The calculation algorithms have been computerized and used to calculate the 
RLTC and RLTR coefficients for a number of CP xFRP laminates. The results 
for the selected laminated are presented in the study. Correctness, high accuracy 
and practical usability of the algorithms have been fully confirmed. 
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