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Abstract 

Assessing the safety of a structure through inspection has always been part of the 
practice of the structural engineer. Information obtained through these 
inspections can be both objective and subjective. One can update the reliability 
of an existing structure based on objective and subjective information through 
the fuzzified Bayes theorem. 
     This paper cites the algorithm for computing the posterior probability of 
failure based on visual inspection of existing structures by incorporating fuzzy 
set theory into the Bayes theorem. 
     The failure design probability of a structural steel frame is updated. 
     Results indicate that the preciseness of the membership function associated 
with the input data has little or no influence on posterior failure probability. 
Keywords: reliability, Bayes theorem, fuzzy sets, existing structures, steel frame. 

1 Introduction 

In engineering practice one often has to deal with qualitative and vague 
evaluations, commonly known as “fuzzy”. Such subjective fuzzy information is 
to be found in the results of inspections of structures (such as bridges, frames and 
so on) and are accompanied by those of a deterministic and probabilistic kind.  

In particular, when we consider the question of evaluation of the safety level 
of an existing structure, it appears evident that we cannot avoid taking into 
account the quality of workmanship, the state of conservation of the elements 
making up the structure and so on. Estimation of these qualities can be expressed 
subjectively through variations of a linguistic nature. The values of these 
variables, as for example “the quality of the workmanship is good”, or “the state 
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of conservation of the bolts is poor”, being vague and imprecise (which is to say 
fuzzy) cannot be defined with any certainty. For this reason, it is impossible to 
use them efficiently in the ambit of conventional statistical theories.  

Modeling and the taking into consideration of vague and imprecise 
information can be performed through use of the fuzzy set theory, which was 
formulated by Zadeh in the 1960s and later developed by many other researchers 
(see Zadeh [1], Kaufmann and Gupta [2]). The first application of fuzzy set 
theory in civil engineering goes back to Blockley [3], who developed a method 
for evaluating the influence of the many parameters that may reduce the a priori 
safety factor n which determines the probability (pf = 10-n   ) of the occurrence of a 
given structural failure by means of linguistic variables and a “fuzzifier”.  

Subsequently, the procedure of taking into account subjective information 
was developed to allow the reaching of different goals. Blockley [4] extended the 
method illustrated in [3] to the study of twenty-three different structural failures. 
Brown and Yao [5] estimated the effective strength of cast concrete in a given 
structure starting from the results of compression tests on test pieces through the 
taking into account of a fuzzy parameter appropriate for defining the quality of 
the cast. Itoh and Itagaki [6] and Chou and Yuan [7] considered the problem of 
evaluating the reliability of existing structures. The algorithms they described 
allow the calculation of posterior probability based on the results of the visual 
inspection of structural components by incorporating the fuzzy set theory into the 
Bayes theorem. Wu [8] applied the Bayes theorem to evaluation of the reliability 
of systems whose identifying parameters are assumed as fuzzy random variables 
with an a priori distribution of the fuzzy kind.  

Thus by combining the fuzzy set theory (which allows the expression of 
linguistic evaluations through specific functions called “membership functions”) 
with the Bayes theorem it is possible to solve the problem of evaluating the 
reliability of an existing structure and determine the posterior reliability of 
uncertain parameters on the basis of all the results (deterministic, probabilistic 
and fuzzy) of inspections. 

But the use of membership functions requires the solution of the problem of 
their modeling. The analysis and evaluation of damage to a structural element is 
in fact a difficult process in which human judgement plays a most important role. 
In the literature we can find many different methods proposed for the modeling 
of membership functions based on expert judgements. These operations are 
generally quite costly and laborious, as well as requiring long periods of time. 
Thus there has been a tendency to restrict membership functions to well-known 
forms. Triangular, left-shoulder, right-shoulder and trapezoidal or, more 
generally, piecewise linear, functions are common. Also used are standard 
Gaussian or Sigmoid type curves.   

In this work we first illustrate the essential functions of Bayes’ fuzzified 
theorem (Asai and Negoita [10], Kandel [11]). In the illustration, the theorem 
will be applied to the updating of design failure probability for the steel frame 
structure previously studied in [7], based on inspection results considered as 
fuzzy parameters. To evaluate the influence of the form of the membership 
functions necessary in defining inspection judgements on the final result, we use 
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those proposed in [3] and [7] (triangular and piecewise linear in form) in our 
calculations. The two solutions obtained are then compared. 

2 The fuzzified Bayes theorem 

The Bayes theorem provides a method that allows inclusion of new information 
in a priori probabilistic evaluations, thus producing a new probability value for 
the occurrence of an event (Benjamin and Cornell [9]).  

When there is no fuzzification and we take into account the theorem of total 
probability, the Bayes theorem is defined by the relation: 
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In Eqn (1)  BJ  is the Jth unknown random parameter having a known a priori 

distribution P(BJ ), whose probability is to be updated; A is the random sample 
representing the parameter to be inspected; m is the number of mutually 
exclusive and totally exhaustive events. P(BJ | A ) is commonly known as the 
posterior probability of BJ  after statistical event A has taken place. 

Equation (1) is thus valid if event A can be expressed objectively, which is 
not the case of a fuzzy event. Therefore the above formulation of the Bayes 
theorem cannot be used with information of the type: “the crack is small” or “the 
state of bolt conservation is poor”, and so on, which are vague and imprecise and 
cannot by defined with any certainty. To express such fuzzy information, 
specific linguistic variables are introduced. In particular, function µÃ (x) is 
introduced to express the probability of fuzzy event Ã.  

Taking this into account, we find that the conditional probability of fuzzy 
event  Ã can be expressed as: 
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where fx|BJ (x) is the conditional probability function that predicts event BJ for 
support x. Equation (2) is valid if the support is continuous while if the support is 
discrete, the equation is written: 
 

( ) ( ) ( )xPxBAP JBx
x

AJ |~|~
⋅∑=

∀
µ                                (3) 

 
Briefly stated, the posterior probability of event BJ, which takes into account 

the observation of fuzzy event Ã, is obtained by modifying Eqn (1) in accordance 
with Eqns (2) and (3).  

The fuzzy Bayes theorem ([10], [11]) can therefore be expressed by the 
following relations. Where the support is continuous, taking into account Eqn 
(2), Eqn (1) is written: 
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where the support is discrete, taking into account Eqn (3), Eqn (1) is written: 
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3 Examples of application 

The example under consideration (see [7]) concerns the updating of the design 
failure probability of a steel frame following an inspection. It is assumed that 
such a probability is equal to Pf = 10-5, and that this represents a mean reliability 
value that could be calculated by considering the construction of a large number 
of similar structures. Numerous components (both structural and non-structural) 
are inspected. Since the conditions of these components influence the overall 
failure probability of the structure, they assume the role of probability 
parameters. It is supposed that during the inspection the following parameters are 
considered: connections, foundations, alignment, columns, beams, braces, bolts 
and paint. 

3.1 Statistical parameters 

We consider event BJ which may correspond to event B1 (= the structural 
component is safe) or to event B2 (= the structural component is near failure). 

The conditional probability function of random event BJ, owing to the 
support of quality x, supposedly assumes the following quadratic forms: 
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since Ni is the index of the importance of the parameter or structural component i 
and x is the support quality. Since the above functions (6) represent probability 
functions, they must satisfy the basic axiom of probability. They are therefore 
normalized in accordance with the following relation: 
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Figure 1: Conditional probability function for Quality at various importance 
indices given as Safe. 
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Figure 2: Conditional probability function for Quality at various importance 
indices given as Failure. 

Functions (6) must be defined so as to respect the “weight” assumed by each 
parameter in the evaluation of the overall safety of the structure. The 
meaningfulness of each parameter in overall safety is given by the indices of 
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importance. Parameters are ordered on the basis of their indices of importance. 
Indices of unit value correspond to the maximum importance. Numerically 
increasing values of the index imply a reduction in the importance of parameters. 

In the part that follows it is supposed possible to assume for each index, on 
the basis of expert judgement, the values given in Table I. It is to be pointed out 
that functions (6) may assume different forms for each parameter. In particular, 
the index of importance may in such forms be defined implicitly.  

The results of normalization calculations are shown in Figures 1 and 2. 
Finally, in order to simplify calculations, we allow the parameters to be 

mutually independent, as are their effects on structural reliability. 

3.2 Probability of inspection results 

It is supposed that the quality of each of the parameters considered above can be 
verbally described by fuzzy evaluations of the kind: “the state of conservation of 
the bolts is poor”. Below, in order to evaluate the influence of the modeling on 
the results supplied by the fuzzified theorem, two different circumstances will be 
considered. The first kind of modeling, which will be referred to as type 1 and 
which is taken from [3], is indicated in Figure 3 and corresponds to functions (8). 
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Figure 4. 
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Figure 3: Membership function for Quality of type 1. 

 

 

Figure 4: Membership function for Quality of type 2. 
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Considering that three quality judgements can be applied to the eight 

parameters, 6561 possible combinations of inspection results can be considered. 
The three possible cases of inspection results that are considered herein (taken 
from [7]) are illustrated in Table I below. 

3.3 Updating of failure probability 

Having assigned the index of importance to each of the structural parameters 
considered, we can calculate the posterior failure probability of the frame both 
on the basis of functions (7) and the membership functions reflecting inspection 
results (8) and (9). The posterior probability of failure of the frame, taking into 
account the occurrence of fuzzy events Ã1, Ã2 … Ã8, is obtained by extending 
Eqn (1) to the case of more than one fuzzy variable. We have: 
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Having supposed that events  Ã1, Ã2 … Ã8 are independent, we indicate by: 
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the posterior probability of event BJ on the basis of observation of the first 
parameter. Obviously we also have the following: 
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Having indicated by P(Bi

J) the posterior probability of event BJ following 
observation of parameter i, in general we can write: 
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Equation (13) above is immediately explicable by using Eqn (2) when the 
support is continuous and Eqn (3) when it is discrete. 

Table 1:  Posterior failure probability for the type 1 (col. 5) and type 2 (col. 
6) membership functions adopted.  

4 Results of numerical processing and conclusions 

Results of calculations performed are shown in Table 1 and correspond to the 
three circumstances of the inspection results considered.  

In column 5 of Table 1 we find the updated values of failure probability 
deduced by adopting functions (8); in column (6) we see those deduced by 
adopting functions (9). 

CASE N° 
(1) 

Parameter 
(2) 

Index Ni 
(3) 

Quality Ai 
(4) 

Pi
f ( 1 ) 
(5) 

Pi
f ( 2 ) 
(6) 

 Connection 1 Normal 1.00E-5  1.00E-5 
 Foundation 1 Poor 3.16E-5 3.11E-5 
 Alignment 1 Normal 3.16E-5 3.11E-5 

1 Columns 2 Poor 6.94E-5 6.76E-5 
 Beams 4 Normal 6.94E-5 6.76E-5 
 Bracing 4 Poor 9.52E-5 9.24E-5 
 Bolts 4 Poor 1.31E-4 1.26E-5 
 Painting 6 Normal 1.31E-4 1.26E-5 
 Connection 1 Good 3.17E-6 3.22E-6 
 Foundation 1 Normal 3.17E-6 3.22E-6 
 Alignment 1 Poor 1.00E-5 1.00E-5 

2 Columns 2 Normal 1.00E-5 1.00E-5 
 Beams 4 Good 7.29E-6 7.32E-6 
 Bracing 4 Normal 7.29E-6 7.32E-6 
 Bolts 4 Poor 1.00E-5 1.00E-5 
 Painting 6 Good 1.00E-5 1.00E-5 
 Connection 1 Good 3.17E-6 3.22E-6 
 Foundation 1 Good 1.00E-6 1.04E-6 
 Alignment 1 Good 3.17E-7 3.34E-7 

3 Columns 2 Normal 3.17E-7 3.34E-7 
 Beams 4 Good 2.32E-7 2.44E-7 
 Bracing 4 Normal 2.32E-7 2.44E-7 
 Bolts 4 Good 1.69E-7 1.79E-6 
 Painting 6 Normal 1.69E-7 1.79E-6 
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Calculations were carried out by adopting the hypothesis of a discrete support 
by means of the use of a simple program created specifically for the purpose. 

The values of failure probabilities, later updated by means of Eqn (13), on the 
basis of inspection results, are found to be practically insensitive to the different 
definitions of the membership functions adopted and, to all practical purposes, 
substantially coincident. 

As can easily be seen, an “average” failure probability, like that of the design, 
is reduced if following inspection it is found that the parameters that globally 
define it turn out to be more than average. On the contrary, it increases when it is 
found that the parameters that globally define it are less than average. 

Generally speaking, the results indicate that the preciseness of the 
membership function associated with the input data has little or no influence on 
the posterior failure probability. Thus, the fuzzified Bayes theorem has practical 
applications in assessing the posterior failure probability of existing structures, 
with minimal expert input to establish the necessary membership functions and is 
a very powerful tool of analysis. 
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