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Abstract

Limit analysis with rigid block models is a tool successfully used in recent years
for the assessment of ancient masonry structural elements and small buildings. In
this paper, the interface yield functions for three-dimensional models are defined
at interpolation points, instead of using the generalised stresses approach. This
approach leads to very simple expressions for the yield functions and flow rules
and therefore, renders the mathematical programming problem easier to solve than
the generalised stresses formulation. The solution for the limit analysis problem is
obtained using the load-path following approach. The validation of the present
proposal shows good agreement compared with non-linear finite element results.
Keywords: limit analysis, rigid block assemblages, non-associated flow, numerical
integration.

1 Introduction

A valuable model for the structural assessment of ancient masonry structures is
the limit analysis of rigid block assemblages interacting through no-tension and
frictional interfaces. The reason for this affirmation lies in the fact that masonry
has low tensile strength and quasi-brittle failure; therefore, at collapse, the cracks
render the structure as a set of rigid blocks rocking and sliding between them.

In the rigid blocks modelling strategy, the degrees of freedom are related to
the blocks, and the stress and strain variables are related to the interfaces. There-
fore, blocks can be regarded as extended nodes and the interfaces as structural
elements. Previous works in this subject have used mostly a generalised stress
approach for the interfaces [1–4]. This means that the generalised stresses are,
for instance, the normal and shear forces and the bending and torsion moments.
Besides, Livesley[5, 6], using a different approach, verified the contact at points
located at the interface corners.
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In this paper, the use of numerical integration techniques is investigated, as an
alternative to the generalised stresses approach for the yield function description.
Firstly, the formulation for non-associated limit analysis of rigid block assem-
blages is outlined. Then, the formulation of the yield function and flow rule using
numerical integration is presented. A discussion of the torsion failure on frictional
interfaces follows, where it is emphasised the importance of a correct normal stress
distribution calculation over the interface. A comparison of results for a model
obtained by the proposed approach against non-linear FE method results serves to
validate the proposal. Finally, relevant conclusions are stated.

2 Limit analysis of rigid block assemblages

Eqns. (1-6) are the conditions that a limit analysis solution with non-associated
flow rule must fulfil, see e.g. [7]. Eqn. (1) combines the compatibility and flow
rule conditions. Here, the columns of the matrix �N0 contain the flow directions for
each one of the yield functions in the structure; the flow multipliers for each one
of such yield functions form the δ�λ vector; �C is the compatibility matrix and δ�u
is the vector of block displacement rates. Eqn. (2) is a scaling condition for the
displacement rates that ensures the existence of non-zero but finite values. Here �Fv

is the vector of variable loads. Eqn. (3) ensures equilibrium. Here �Fc is the vector of
constant loads; α is the load factor that measures the amount of the variable loads
applied to the structure and �Q is the vector of generalised stresses at the interfaces.
In this paper the elements of �Q are the actual stress values at every integration
point of all the interfaces in the model. Eqn. (4) guaranties that the yield functions,
vector �ϕ, are not violated and eqn. (5) ensures that plastic flow implies energy
dissipation. Finally, eqn. (6) guaranties that plastic flow cannot occur unless the
stresses have reached the yield surface. Figure 1 shows a graphical representation
of the static variables at two adjacent blocks, named i and j, and the common
quadrilateral interface, k. Details about these vectors, matrices and functions for
rigid block, three-dimensional models have been given elsewhere [4]. In this paper,
modifications are made with the aim to change the generalised stresses approach
to the integration points approach.

�N0δ�λ−�Cδ�u =�0 (1)

�FT
v ·δ�u−1 = 0 (2)

�Fc + α�Fv −�CT �Q =�0 (3)

�ϕ ≤�0 (4)

δ�λ ≥�0 (5)

�ϕT ·δ�λ = 0 (6)
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Figure 1: Static variables at an interface and adjacent blocks.

3 Numerical integration approach

Consider a quadrilateral shaped interface, k, illustrated in Figure 1. This interface
lies between two infinitely strong blocks, i and j. The cohesion-less Coulomb’s law
governs the interface failure. The interface is supposed to represent a dry masonry
joint, therefore, it has no tensile strength. The origin of the local coordinate system
is located at the centroid of the interface, o. This coordinate system has axes x1 and
x2 on the interface plane, and xn in the normal direction, forming a right-handed
system. The unitary vectors along the coordinate axes x1, x2 and xn are �s1, �s2 and
�n, respectively, Figure 1. The stress vector�σ at a point has components τ1, τ2 and
σ along the axes x1, x2 and xn, respectively. The normal component, σ, is positive
in tension.

The resultant stresses over the interface are the shear forces, V1 and V2, along
the x1 and x2 axes, respectively; the normal force, N; the bending moments, M1

and M2, along the x1 and x2 axes, respectively and the torsion moment, T . Under a
particular stress distribution, eqns. (7–12) give the values for the stress resultants.
Here, dA is the differential of area. The second right hand sides of eqns. (7–12)
are the numerical integration approximations for the integrals in the first right
hand sides. Here, ξ represents the weights of the quadrature, np is the number
of integration points, assumed equal in both interface in-plane directions, ‖J‖ is
the determinant of the Jacobian of the transformation between the interface coor-
dinate system and the quadrature coordinate system [8]. Since the interfaces are
supposed to be quadrilaterals, this quantity is a constant and can be placed out of
the summation. In the second right hand sides, the variables are evaluated only at
the integration points, according to the indexes l and m.

V1 =
∫

S
τ1dA

.= ‖J‖
np

∑
l=1

np

∑
m=1

τ1lmξlξm (7)

V2 =
∫

S
τ2dA

.= ‖J‖
np

∑
l=1

np

∑
m=1

τ2lmξlξm (8)
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N =
∫

S
σdA

.= ‖J‖
np

∑
l=1

np

∑
m=1

σlmξlξm (9)

M1 =
∫

S
σx2dA

.= ‖J‖
np

∑
l=1

np

∑
m=1

σlmx2mξlξm (10)

M2 =
∫

S
−σx1dA

.= ‖J‖
np

∑
l=1

np

∑
m=1

−σlmx1lξlξm (11)

T =
∫

S
(−τ1x2 + τ2x1)dA

.= ‖J‖
np

∑
l=1

np

∑
m=1

(−τ1lmx2m + τ2lmx1l)ξlξm (12)

In the approach proposed in this paper, it is not necessary to calculate the stress
resultants over the interfaces, but it can be done by means of eqns. (7–12). The
yield function characterisation is performed by limiting the normal and shear stresses
at each integration point. The normal stress limits are: from bellow, the effective
compressive stress and from top the zero value due to the no-tension hypothesis.
Therefore, eqns. (13) and (14), represent the yield functions for the normal stress.
Here, fce f is the effective compressive stress, which takes into account the effect of
transverse cracking and the fact that masonry presents quasi-brittle failure, while
the model features perfect plastic behaviour. The shear stresses are limited by the
cohesionless Coulomb criterion, as already mentioned. This criterion conducts to a
quadratic function as illustrated in Figure 2 by the circle of radius −µσ, where µ is
the friction coefficient. Nevertheless, in order to simplify the solution to the math-
ematical programming problem, a piecewise linear approximation is proposed and
illustrated also in Figure 2 by an inscribed octagon. The resulting yield functions
are expressed by eqns. (15) and (16). It is observed that, due to the absolute value
operands, these two expressions represent the eight linear functions illustrated in
Figure 2.

ϕc ≡ −σ− fce f ≤ 0 (13)

ϕt ≡ σ ≤ 0 (14)

ϕs1−s4 ≡|τ1|+(
√

2−1)|τ2|+ µσ≤ 0 (15)

ϕs5−s8 ≡(
√

2−1)|τ1|+ |τ2|+ µσ≤ 0 (16)

There are, therefore, ten linear yield functions for each integration point. The
yield functions for all the integration points at every interface in a model can be
cast in matrix form, in such a way that eqn. (4) takes the form of eqn. (17). Here, �N
is the matrix resulting from the assemblage of all the yield functions in the model.

�ϕ ≡ �N�Q ≤�0 (17)

There are three generalised strain or relative displacement rate components at
each integration point: δs1, δs2 and δn, parallel to the local coordinate directions
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Figure 2: Shear yield function.

Table 1: Flow directions for an integration point failure.

Flow multiplier δs1 δs2 δn

δλc 0 0 −1

δλt 0 0 1

δλs1−4 τ1/|τ1| (
√

2−1)τ2/|τ2| 0

δλs5−8 (
√

2−1)τ1/|τ1| τ2/|τ2| 0

x1, x2 and xn, respectively. The flow directions for the yield modes are in Table 1.
For the compression and tension yield modes the flow consists on a normal relative
displacement rate in the negative and positive directions of the xn axis, respectively.
The flow directions for the sliding failure modes are obtained from the normality
rule but neglecting the relative displacement rate along the xn axis, due to the
hypothesis of zero dilatancy. The rows of Table 1 are used to assemble the columns
of matrix �N0, in eqn. (18), which gives the generalised strains resulting from the
flow rule condition. Here the vector δ�q gathers the generalised strains for all the
integration points in a model.

δ�q = �N0δ�λ (18)

The displacement rates for a generic block i are the translation displacement
rates at the block centroid δ�ut

i and the angular displacement rates δ�ur
i . These vec-

tors are referred to the global coordinates system. Eqn. (19) gives the generalised
strains at the integration point p of the interface k in terms of the displacement
rates at the blocks i and j; see Figure 1. Here, �T g

k is the matrix that transforms a
vector from the global coordinates system to the local interface k system; �cpk, �ci

and �c j are the position vectors of the point p, and the centroids of blocks i and j,
respectively. Eqn. (19) can be used to assemble the compatibility set of equations
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of a model in the form of eqn. (20). It is evident that eqn. (1) follows directly from
eqns. (18) and (20).

δ�qpk = �T g
k

(
δ�ut

j − δ�ut
i + δ�ur

j ∧
(
�cpk −�c j

)− δ�ur
i ∧

(
�cpk −�ci

))
(19)

δ�q = �Cδ�u (20)

4 Torsion failure on frictional interfaces

Orduña and Lourenço [4] studied the torsion failure on rectangular frictional inter-
faces. In that work, the assumptions were made that dilatancy coefficient was zero
and that the normal stresses over the interface have uniform distributions either
over all or part of the interface area. With these assumptions, yield functions and
flow rules were presented in terms of the stress resultants over the interface. Never-
theless, with the proposal presented in this work, where the normal stresses at each
integration point of an interface are independent each other, there are no guarantee
that uniform or even normal stresses distributions are obtained over an interface.
This section presents a discussion about the influence of the normal stresses distri-
bution over the interface on its torsion moment strength.

Consider a rectangular interface with dimensions 2l1 and 2l2 parallel to the local
axes x1 and x2, respectively, as shown in Figure 3. This interface, placed between
two infinitely rigid bodies, is subjected to a constant normal force in compres-
sion, N (negative), at the interface centroid, and fails under the action of a torsion
moment, T . The friction coefficient is µ and an infinite compressive strength is
assumed by now.

At incipient failure, the sliding displacement rates are zero at the centre of
twisting and vary linearly with the distance from this point. If associated plas-
ticity is assumed (dilatancy coefficient equals friction coefficient), the normal dis-
placement rates would be proportional to the sliding displacement rates. The limit

l1 l1

l2

l2

x 2

x 1

c

Figure 3: Rectangular joint.
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analysis solution indicates that the centre of twisting is located at the interface
centroid, therefore, the maximum sliding and normal displacement rates are at the
interface corners. As the blocks are rigid, separation will occur at the inner points,
and contact will be possible only at the interface corners. Under this conditions, it
is straightforward to show that eqn. (21) proportionates the value of the failure tor-
sion moment, where c is the distance from the interface centroid to any corner; see
eqn. (22) and Figure 3. Michalowski and Gawecki [9] arrived to an analogous con-
clusion for a circular interface where c is replaced by the circle radius in eqn. (21).
It is possible to arrive to the same result always that the dilatancy coefficient is
positive, even if it does not equal the friction coefficient.

T = cµ(−N) (21)

c =
√

l2
1 + l2

2 (22)

If the dilatancy coefficient is negative, the normal displacement rates are again
proportional to the sliding displacement rates. Nevertheless, no separation but pen-
etration exists between blocks, contact is only possible at the very interface cen-
troid and, therefore, the torsion moment strength is zero (contact on a single point).

If the dilatancy coefficient is zero, contact points or areas are not determined
by the failure mechanism and neither, the normal stress distribution. This means
that for every possible normal stress distribution, there exists a torsion moment
strength. It is evident that the values of these strengths lie between zero and that
given by eqn. (21). The most fiscally meaningful case consists on a uniform nor-
mal stress distribution over the interface. For this case, eqn. (23) gives the torsion
moment strength, where the torsion constant cT is given by eqn. (24) [4]. It is
observed that eqns. (21) and (23) are the same except for the torsion constant def-
inition.

T = cTµ(−N) (23)

cT =
1
3

[
c +

l2
1

2l2
ln

(
l2 + c

l1

)
+

l2
2

2l1
ln

(
l1 + c

l2

)]
(24)

The cT /c ratio can be calculated for the whole range of interface aspect ratios,
and the observation is made that it has a small variation between 0.50 and 0.54.
Therefore, a first but marginal conclusion is that the torsion constant can be approx-
imated as half the distance from the centroid to the corner. A more important obser-
vation is that, for zero dilatancy, the torsion strength of the interface can take val-
ues between zero and that given by eqn. (21), but the strength for a uniform normal
stress distribution is about half the way between the former values. Therefore, it
is of fundamental importance, in limit analysis problems with zero dilatancy, to
obtain solutions with even normal stress distributions over the interfaces.

Orduña and Lourenço [4, 10] showed that for this type of problem it is also
important to take into account the loading history. Here, a solution procedure, akin
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Table 2: Calculated ultimate load factors for infinite compressive strength.

Procedure Ultimate load factor

Theoretically minimum 0.427

Theoretically maximum 0.553

FEM 0.479

Load-path following 0.465

to the load-path following one is used, which agrees with the integration points
approach. The main idea behind this procedure is to keep the normal stresses dis-
tribution as uniform as possible, while the variable loads are applied by small
increments.

5 Validation

The validation of this type of three-dimensional models is not an easy task due
to the lack of experimental or analytical results to compare with. Therefore, the
example presented here is a comparisons against a finite element (FEM) non-linear
model analysed with the package DIANA [11].

Figure 4(a) shows the model of a masonry hollow pile. The pile is built of
dry masonry blocks with dimensions 0.2×0.2×0.4 m. The pile dimensions are
0.6×0.8×1.2 m. The material volumetric weight is 20 kN/m3 and the friction
coefficient is 0.7. The permanent loads are the self-weight of the blocks. The vari-
able loads are proportional to the blocks weight, but horizontally applied in the
direction of the larger base side (X direction). The compressive effective stress,
according to the load-path following procedure, is steadily increasing.

Figure 4(b) shows the failure mechanism obtained by the FEM analysis. The
same failure mechanism is obtained by limit analysis and Figures 4(c), (d) show it
from two different viewpoints for a better understanding. A range of ultimate load
factors is possible for this mechanism and for infinite compressive strength. It is
noted that the ultimate load factor is defined as the ratio between the variable loads
causing failure on the structure, and their nominal values, in this case numerically
equal to the self-weight of the blocks. Table 2 presents the ultimate load factor
obtained from different approaches. If the reaction on the overturning blocks set
is concentrated on the interface A only, Figure 4(d), with zero stresses at interface
B, the ultimate load factor would be 0.427, the minimum possible for this mech-
anism. If there are non-zero normal and shear contact forces on interface B, the
last one opposing to the upper block overturning, the maximum possible ultimate
load factor for the mechanism shown equals 0.553. The ultimate load factor calcu-
lated with the load-path following procedure is 3% lower than the FEM value. It
is possible to verify that the load-path following procedure agrees very well with
the FEM results.
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Figure 4: Masonry pile; (a) model; failure mechanisms for infinite compressive
strength: (b) FEM failure mechanism; (c) and (d) different views of the
limit analysis failure mechanism.

It is interesting to note that the condition of zero stresses at interface B is only
possible for an infinite compressive strength. Under limited compressive stresses,
the hinge on interface A forms slightly inwards and interface B must be in contact
and must transmit normal and shear forces.

6 Conclusions

A limit analysis formulation using numerical integration techniques at the inter-
faces has been proposed for rigid block assemblages. The importance of even nor-
mal stress distributions over the interfaces was demonstrated. Comparisons, not
presented here due to space limitations, show that good agreement is obtained, at
interface level, between the integration points approach and the yield functions
obtained by constant normal stress distributions over regular shaped parts of the
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interface. The presented example shows also very good agreement compared with
the non-linear FEM results. It must be recognised that the computing time for the
limit analysis approach and for this large model is not attractive compared with the
FEM process. Nevertheless, it is expected that, optimising the numerical tasks for
the limit analysis approach, advantage can be taken from the simplified nature of
this formulation and the computing times can be significantly reduced.
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