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Abstract 

In this paper the optimization of the single-storey industrial building steel 
structure is presented. The structure consists of the main portal frames, which are 
mutually connected with the purlins. All structural elements are proposed to be 
built up of standard hot rolled I sections. The structural optimization is 
performed by the Mixed-Integer Non-linear programming approach, MINLP. 
The MINLP performs a discrete topology and standard dimension optimization, 
while continuous parameters are simultaneously calculated inside the continuous 
space. Since the discrete/continuous optimization problem of steel frames is  
non-convex and highly non-linear, the Modified Outer-Approximation/Equality-
Relaxation (OA/ER) algorithm has been used for the optimization. Alongside the 
optimal structure mass, the optimal topology (an optimal number of main portal 
frames and purlins) as well as all standard cross-section sizes have been 
obtained. The paper includes the theoretical basis and a practical example with 
the results of the optimization. 

1 Introduction 

Single-storey frame structures are extensively used for industrial, leisure and 
commercial buildings. In order to obtain efficient frame designs, researchers 
have introduced various optimization techniques, appropriate either for the 
continuous or the discrete optimization. O’Brien and Dixon [1] have proposed a 
linear programming approach for the optimal design of pitched roof frames. 
Guerlement et al. [2] have introduced a practical method for single-storey steel 
structures, based on a discrete minimum weight design and Eurocode 3 [3] 
design constraints. Recently, Saka [4] has considered an optimum design of 
pitched roof steel frames with haunched rafters by using a genetic algorithm. 
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One of the latest researches reported in this field is the work of Hernández et al. 
[5], where authors have considered minimum weight design of steel portal 
frames with software developed for structural optimization. 

This paper deals with topology and standard dimension optimization of 
unbraced single-storey industrial building steel structures. The optimization of 
portal frames is performed by the Mixed-Integer Nonlinear Programming, 
MINLP. The MINLP is a combined discrete and continuous optimization 
technique. In this way, the MINLP performs the discrete topology (i.e. the 
number of frames and purlins) and standard dimension (i.e. the standard cross-
section sizes of columns, beams and purlins) optimization simultaneously with 
the continuous optimization of parameters (e.g. a structure mass, internal forces, 
deflections, etc.). 

The MINLP discrete/continuous optimization problems of frames are in most 
cases comprehensive, non-convex and highly non-linear. The optimization is 
proposed to be performed through three steps. The first one includes the 
generation of a mechanical superstructure of different topology and standard 
dimension alternatives, the second one involves the development of an MINLP 
model formulation and the last one consists of a solution for the defined MINLP 
optimization problem.  

The objective of the optimization is to minimize the mass of the single-storey 
industrial building. The mass objective function is subjected to the set of the 
equality and inequality constraints known from the structural analysis and 
dimensioning. The dimensioning of steel members is performed in accordance 
with Eurocode 3.  

The Modified Outer-Approximation/Equality-Relaxation algorithm is used to 
perform the optimization, see Kravanja and Grossmann [6], Kravanja et al. [7-8].  

The two-phase MINLP optimization is proposed. It starts with the topology 
optimization, while standard dimensions are relaxed temporary into continuous 
parameters. When the optimal topology is found, standard dimensions of cross-
sections are re-established and standard dimension optimization of beams, 
columns and purlins is then continued until the optimal solution is found.  

2 Single-storey industrial building 

The paper presents the topology and standard dimension optimization of 
unbraced rigid single-storey industrial building steel structures, see Figure 1. 
Columns, beams and purlins are proposed to be built up of standard hot rolled 
steel I sections. 

The considered portal frame structures are analyzed under the combined 
effects of the self-weight of frame members, uniformly distributed surface 
variable load (snow and wind), concentrated horizontal variable load (wind) and 
an initial frame imperfection. The purlins are designed to transfer permanent load 
(self-weight of purlins and weight of roof) and variable load (snow and wind) to 
frame structure. Internal forces are calculated by the elastic first-order analysis. 
The dimensioning of steel members is performed in accordance with Eurocode 3 
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for the conditions of both ultimate limit state (ULS) and serviceability limit state 
(SLS). 
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Figure 1: Single-storey industrial building. 

When the ultimate limit state of structural members is considered, the 
elements are checked for axial resistance, shear resistance, bending moment 
resistance, interaction between bending moment and axial force, interaction 
between axial compression/buckling and buckling resistance moment. 

Considering the serviceability limit state, the vertical deflections of beams 
and purlins are calculated by the force method. The total deflection δmax 
subjected to the overall load and the deflections δ2 subjected to the variable 
imposed load are calculated to be smaller than limited maximum values: 
span/200 and span/250, respectively. The horizontal deflections ∆ are also 
checked for the recommended limits: the relative horizontal deflection should be 
smaller then the height/150 of the portal frame. 

3 MINLP model formulation for mechanical superstructures 

It is assumed that a general nonconvex and nonlinear discrete/continuous 
optimization problem can be formulated as an MINLP problem (MINLP-G) in 
the form: 

 min   ( )xyc fz T +=  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  (MINLP-G) 

 bCxBy ≤+  
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 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

  y ∈ Y ={0,1}
m
 

where x is a vector of continuous variables specified in the compact set X and y 
is a vector of discrete, mostly binary 0-1 variables. Functions f(x), h(x) and g(x) 
are nonlinear functions involved in the objective function z, equality and 
inequality constraints, respectively. Finally, By+Cx≤b represents a subset of 
mixed linear equality/inequality constraints. 
 The above general MINLP model formulation has been adapted for the 
synthesis of mechanical superstructures (MINLP-SMS). The resulted 
formulation that is more specific, particularly in variables and constraints. It can 
be used also for the modelling the steel frames. It is given in the following form: 

 min   ( )xyc fz T +=  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  
   ( ) axA ≤  
 Ey ≤ e (MINLP-SMS) 
   ( ) rxRDy ≤+e  

   ( ) kdLKy ≤+ cne  

   ( ) sdSPy ≤+ st  

 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

  y ∈ Y ={0,1}
m
 

The MINLP model formulation for mechanical superstructures is proposed to be 
described as follows: 
• Included are continuous variables x={d, p} and discrete binary variables 

y={ye, yst}. Continuous variables are partitioned into design variables d={dcn, 
dst} and into performance (nondesign) variables p, where subvectors dcn and 
dst stand for continuous and standard dimensions, respectively. Subvectors 
of binary variables ye and yst denote the potential existence of structural 
elements inside the superstructure (the topology determination) and the 
potential selection of standard dimension alternatives, respectively. 

• The mass or economical objective function z involves fixed mass or cost 
charges in the linear term cT y and dimension dependant mass or costs in the 
term f(x). 

• Parameter nonlinear and linear constraints h(x)=0, g(x) ≤ 0 and A(x) ≤ a  
represent the rigorous system of the design, loading, stress, deflection, 
stability, etc. constraints known from the structural analysis. 

• Integer linear constraints Ey ≤ e are proposed to describe relations between 
binary variables. 
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• Mixed linear constraints Dye+R(x) ≤ r restore interconnection relations 
between currently selected or existing structural elements (corresponding 
ye = 1) and cancel relations for currently disappearing or nonexisting 
elements (corresponding ye = 0). 

• Mixed linear constraints Kye+L(dcn) ≤ k are proposed to define the 
continuous design variables for each existing structural element. The space 
is defined only when the corresponding structure element exists (ye = 1), 
otherwise it is empty. 

• Mixed linear constraints Py+S(dst) ≤ s define standard design variables dst. 
Each standard dimension dst is determined as a scalar product between its 
vector of standard dimension constants q and its vector of binary variables 
yst. Only one discrete value can be selected for each standard dimension 
since:  

 
std = ∑

∈Ii
ii yq st      ∑ =

∈Ii
iy 1st       (1) 

4 The optimization model 

The optimization model for a single-storey industrial building steel structure 
contains the mass objective function, (in)equality constraints and the variables 
(dimensions, internal forces, deflections, mass, etc.). Equality and inequality 
constraints represent a rigorous system of the design, loading, resistance, stress, 
deflections and stability functions. The dimensioning constraints are determined 
according to Eurocodes 3 (ultimate and serviceability limit states).  

Resistance to bending moment of beams, columns and purlins: 
 

RdelSd MM ,≤           (2) 

0
,

M

yel
Rdel

fW
M

γ
⋅

=      (3) 

 
where MSd is the design bending moment, Mel,Rd is the elastic resistance moment, 
fy is the yield strength of structural steel, Wel is the elastic section modulus and 
γM0 is the partial safety coefficient. 

Resistance to axial force of the beams and columns: 
 

RdplSd NN ,≤             (4) 

0
,

M

y
Rdpl

fA
N

γ
⋅

=               (5) 

 
where NSd is the design axial force, Npl,Rd is the compression resistance, A is the 
cross-section area, γM0 is the partial safety coefficient. 

Compression/buckling resistance of columns: 

High Performance Structures and Materials III  647

 © 2006 WIT PressWIT Transactions on The Built Environment, Vol 85,
 www.witpress.com, ISSN 1743-3509 (on-line) 



RdbSd NN ,≤          (6) 
 

1
,

M

y
Rdb

fA
N

γ
χ

⋅
=               (7) 

 
where Nb,Rd is the compression/buckling resistances, χ is the reduction factors for 
the relevant buckling mode and γM1 is the partial safety coefficient. 

Shear resistance of beams, columns and purlins: 
 

RdplSd VV ,≤          (8) 
 

0
,

1
3 M

y
vRdpl

f
AV

γ
⋅⋅=                 (9) 

 
where VSd is the design shear force, Vpl,Rd is the design shear resistance and Av is 
shear area. 

Interaction between axial force and bending moment: 
 

0.1
,,

≤+
Rdel

sd

Rdpl

sd

M
M

N
N        (10) 

 
Interaction between axial compression/buckling and bending moment lateral-

torsional buckling: 
 

0.1
// 11

≤
⋅⋅

⋅
+

⋅⋅ MyelLT

sdLT

My

sd

fW
Mk

fA
N

γχγχ
                (11) 

 
where kLT is the coefficient at lateral-torsional buckling, and χLT is the reduction 
factors for the relevant buckling mode at lateral-torsional buckling. 
 

Inequality constraints of serviceability limit states for the vertical deflection 
of beams and purlins: 
 

200max,
L

L ≤δ      
200max,

f
Lf

L
≤δ            (12) 

 

250,2
L

L ≤δ       
250,2

f
Lf

L
≤δ          (13) 

 
where δmax.L is the vertical deflection of beams and δmax.Lf is the vertical 
deflection of purlins for the terminated state, δ2,L is the vertical deflection of 
beams and δ2,Lf is the vertical deflection of purlins for the variable load. 
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Inequality constraints of serviceability limit states for the horizontal 
deflections of portal frame: 

 

150
H

≤∆         (14) 

5 The optimization 

The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm 
(Kravanja and Grossmann [6]) was used to perform the optimization. The 
OA/ER algorithm consists of solving an alternative sequence of Non-linear 
Programming optimization subproblems (NLP) and Mixed-Integer Linear 
Programming master problems (MILP). The former corresponds to the 
optimization of parameters for a frame structure with fixed topology and 
standard dimensions and yields an upper bound to the objective to be minimized. 
The latter involves a global approximation to the superstructure of alternatives in 
which a new topology and standard sizes are identified so that its lower bound 
does not exceed the current best upper bound. The search is terminated when the 
predicted lower bound exceeds the upper bound. 

The optimal solution of complex non-convex and non-linear MINLP problem 
with a high number of discrete decisions is in general very difficult to be 
obtained. The optimization is thus performed sequentially in two different phases 
to accelerate the convergence of the OA/ER algorithm. The optimization is 
proposed to start with the topology optimization of the frame, while standard 
dimensions are relaxed temporary into continuous parameters. When the optimal 
topology is found, standard sizes of cross-sections are re-established and the 
standard dimension optimization of beams, columns and purlins is then 
continued until the optimal solution is found. 

6 The example 

The paper presents an example of the topology and standard dimension 
optimization of a single-storey industrial building. The building is 30 meters 
wide, 50 meters long and 8 meters high, see Figure 2. The structure is consisted 
from equal non-sway steel portal frames which are mutually connected with the 
purlins.  

The portal frame is subjected to self-weight g, uniformly distributed surface 
variable load q (snow s and wind w), concentrated variable load P (wind F and 
initial frame imperfection Fφ). Variable imposed load (s = 1.60 kN/m2 and w = 
0.137 kN/m2) is defined as the uniformly distributed surface load in the model 
input data. Both, the horizontal concentrated load at the top of the columns and 
the vertical uniformly distributed line load on the beams are calculated 
considering the intermediate distance between the portal frames.  

Design/dimensioning was performed in accordance with Eurocode 3. The 
design loads were calculated for the conditions of both ultimate limit states and 
serviceability limit states: (a) for ultimate limit states: 1.35·(g + s + w + F + Fφ), 
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(b): for serviceability limit states: 1.00·g + 0.90·(s + w + F + Fφ). While internal 
forces were calculated by the elastic first-order analysis the deformation of frame 
members were calculated by the force method. 

The portal frame superstructure was generated in which all possible 
structures were embended by 30 portal alternatives, 20 purlin alternatives and 
different standard size variation. The superstructure also comprised 24 different 
standard hot rolled European wide flange I beams, i.e. HEA sections (from HEA 
100 to HEA 1000) for each column, beam and purlin separately. The material 
used was steel S 355. 

The optimization was performed by the MINLP optimization approach. The 
task of the optimization was to find the optimal structure mass, the optimal 
topology (the optimal number of portal frames and purlins) and optimal standard 
sizes. 

The optimization was carried out by a user-friendly version of the MINLP 
computer package MIPSYN, the successor of PROSYN [6] and TOP [9]. As 
an interface for mathematical modelling and data inputs/outputs GAMS (General 
Algebraic Modelling System), a high level language, was used [10]. The 
Modified OA/ER algorithm and the two-phased optimization were applied, 
where GAMS/CONOPT2 (Generalized reduced-gradient method) [11] was 
used to solve NLP subproblems and GAMS/Cplex 7.0 (Branch and Bound) 
[12] was used to solve MILP master problems.  

The optimization model contained 130 (in)equality constraints, 183 
continuous and 122 binary variables. The final optimal solution of 150,87 tons 
was obtained in the 12th main MINLP iteration.  

The optimal result represents the mentioned optimal structure mass of 150,87 
tons, the obtained optimal topology of 12 portal frames an 20 purlins (see Figure 
2) and the calculated optimal standard sizes of columns, beams and purlins (see 
Figure 3). 
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Figure 2: Optimal design of the single-storey industrial building. 
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Figure 3: Optimal design of the portal frame. 

7 Conclusions 

The paper presents the topology and standard dimension optimization of the 
single-storey industrial building steel structure. The optimization is proposed to 
be performed by the Mixed-Integer Non-linear Programming (MINLP) 
approach. The MINLP was found to be a successful optimization technique for 
solving this type of structures. 
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