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Abstract 

In this paper we deal with the topology and standard optimization of unbraced 
steel frames with rigid beam-to-column connections. The optimization has been 
performed by the Mixed-Integer Non-linear Programming (MINLP) approach. 
The MINLP performs a discrete topology and standard dimension optimization, 
while continuous parameters are simultaneously calculated inside the continuous 
space. As the discrete/continuous optimization problem of steel frames is      
non-convex and highly non-linear, the Modified Outer-Approximation/Equality-
Relaxation (OA/ER) algorithm has been used for the optimization. Two practical 
examples with the results of the optimization are shown at the end of the paper. 

1 Introduction 

The paper presents the topology and standard dimension optimization of 
unbraced steel frames with rigid beam-to-column connections. The optimization 
of frames is performed by the Mixed-Integer Nonlinear Programming, MINLP. 
The MINLP is a combined discrete-continuous optimization technique. In this 
way, the MINLP performs the discrete topology (i.e. the number of columns and 
beams) and standard dimension optimization (i.e. standard cross-section sizes) 
simultaneously with the continuous optimization of parameters (e.g. internal 
forces, deflections, mass, costs, etc.).  
 The MINLP discrete/continuous optimization problems of frames are in most 
cases comprehensive, non-convex and highly non-linear. This optimization 
approach is proposed to be performed through three steps. The first one includes 
the generation of a mechanical superstructure of different topology and standard 
dimension alternatives, the second one involves the development of an MINLP 
model formulation and the last one consists of a solution for the defined MINLP 
optimization problem. 
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 The Modified Outer-Approximation/Equality-Relaxation algorithm [1], [2] 
and [3] is used to perform the optimization. The objective of the optimization is 
to minimize the mass of the structure. The finite element equations are defined as 
the equality constraints for the calculation of internal forces and deflections of 
the structure. Constraints for the dimensioning of steel members are determined 
in accordance with Eurocode 3 [4]. Beside the theoretical basics, an example of 
the optimization of a steel frame is presented at the end of the paper. 

2 Steel frames 

Steel frames, see Figure 1, are proposed to be analyzed under the combined 
effects of the self-weight of frame members, uniformly distributed variable load, 
concentrated variable load on each storey and an initial frame imperfection. 
 Second-order elastic structural analysis is performed by considering a 
geometric nonlinearity due to P-δ and P-∆ effects. While the P-δ effect is 
associated with the influence of the axial force on the beam-column member 
flexure, the P-∆ effect denotes the influence of axial force acting through the 
relative sideways displacements of the element ends. In this paper, both effects 
are included in the nonlinear stiffness matrix of the individual frame member by 
usage of stability function approach. Chen and Lui [5] have comprehensively 
described this approach and have presented stability functions sii and sij. These 
stability functions are different for compressive and tensile axial forces. Since 
they give the indeterminate numerical solution when axial force is zero, 
simplified expressions for stability functions S1 and S2, introduced by Kim et al. 
[6], are rather used. The shear deformation effect is neglected considering the 
fact that only slender structural members are subjected to buckling for which 
shear deformation is insignificant. 
 Design/dimensioning of steel frames is performed in accordance with 
Eurocodes 3 for the conditions of both the ultimate limit and serviceability limit 
states. When the ultimate limit state of beam-column members is considered, the 
elements were checked for bending moment, vertical shear, shear buckling, 
interaction between bending, shear and axial force and interaction between 
bending and axial compression/buckling. The ultimate moment capacity is 
calculated by the elastic method. Since the second-order elastic global analysis is 
used, the in-plane buckling lengths of compression members are calculated 
considering the non-sway mode.  
 Considering the serviceability limit state, the vertical deflections of beams in 
the individual storey were calculated by the elastic method. The total deflections 
subjected to overall load δmax and the deflections subjected to the variable 
imposed load δ2 are calculated to be smaller than the limited maximum values: 
span/250 and span/300, respectively. The horizontal deflections are also checked 
for the individual storey and for the structure as a whole. Both types of 
horizontal deflections are checked for the recommended limits: the relative 
horizontal deflection of each storey should be smaller than each storey 
height/300 and the horizontal deflection of the top of the frame must be smaller 
than an overall frame height/500.  
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Figure 1: Unbraced steel frame. 

3 MINLP model formulation for mechanical superstructures 

The MINLP optimization approach requires the generation of an MINLP frame 
superstructure composed of various topology and standard dimension design 
alternatives that are all candidates for a feasible and optimal solution. It is 
assumed that a general nonconvex and nonlinear discrete/continuous 
optimization problem can be formulated as an MINLP problem (MINLP-G) in 
the form: 

 min   ( )xyc fz T +=  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  (MINLP-G) 

 bCxBy ≤+  

 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

  y ∈ Y ={0,1}
m
 

where x is a vector of continuous variables specified in the compact set X and y 
is a vector of discrete, mostly binary 0-1 variables. Functions f(x), h(x) and g(x) 
are nonlinear functions involved in the objective function z, equality and 
inequality constraints, respectively. Finally, By+Cx≤b represents a subset of 
mixed linear equality/inequality constraints. 
 The above general MINLP model formulation has been adapted for the 
optimization of mechanical superstructures (MINLP-SMS). The resulted 
formulation that is more specific, particularly in variables and constraints. It can 
also be used for the modelling of steel frames. It is given in the following form: 
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 min   ( )xyc fz T +=  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  
   ( ) axA ≤  
 Ey ≤ e (MINLP-SMS) 
   ( ) rxRDy ≤+e  

   ( ) kdLKy ≤+ cne  

   ( ) sdSPy ≤+ st  

 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

  y ∈ Y ={0,1}
m
 

 
 In the model formulation, included are continuous variables x={d, p} and 
discrete binary variables y={ye, yst}. Continuous variables are partitioned into 
design variables d={dcn, dst} and into performance (nondesign) variables p, 
where subvectors dcn and dst stand for continuous and standard dimensions, 
respectively. Subvectors of binary variables ye and yst denote the potential 
existence of structural elements inside the superstructure (the topology 
determination) and the potential selection of standard dimension alternatives, 
respectively. 
 The mass or economical objective function z involves fixed mass or cost 
charges in the linear term cTy and dimension dependent mass or costs in the term 
f(x). 
 Parameter nonlinear and linear constraints h(x)=0, g(x) ≤ 0 and A(x) ≤ a  
represent the rigorous system of the design, loading, stress, deflection, stability, 
etc. constraints known from the structural analysis.  
 Integer linear constraints Ey≤ e are proposed to describe relations between 
binary variables. 
 Mixed linear constraints Dye+R(x) ≤ r restore interconnection relations 
between currently selected or existing structural elements (corresponding ye = 1) 
and cancel relations for currently disappearing or nonexistent elements 
(corresponding ye = 0). 
 Mixed linear constraints Kye+L(dcn) ≤ k are proposed to define the continuous 
design variables for each existing structural element. The space is defined only 
when the corresponding structure element exists (ye =1), otherwise it is empty. 
 Mixed linear constraints Py+S(dst) ≤ s define standard design variables dst. 
Each standard dimension dst is determined as a scalar product between its vector 
of standard dimension constants q and its vector of binary variables yst. Only one 
discrete value can be selected for each standard dimension since:  

std = ∑
∈Ii

ii yq st  ∑ =
∈Ii

iy 1st  
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4 Optimization 

The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is 
used to perform the optimization. The OA/ER algorithm consists of solving an 
alternative sequence of Non-linear Programming optimization subproblems 
(NLP) and Mixed-Integer Linear Programming master problems (MILP). The 
former corresponds to the optimization of parameters for a frame structure with 
fixed topology and standard dimensions and yields an upper bound to the 
objective to be minimized. The latter involves a global approximation to the 
superstructure of alternatives in which a new topology and new standard sizes 
are identified so that its lower bound does not exceed the current best upper 
bound. The search is terminated when the predicted lower bound exceeds the 
upper bound. 
 The optimization is performed sequentially in two different phases in order to 
accelerate the convergence of the OA/ER algorithm. The optimization starts with 
the topology optimization of the frame, while standard dimensions are relaxed 
temporary into continuous parameters. In the case of the standard dimension 
optimization only, the optimization begins with the continuous NLP optimization 
of the frame. When the optimal topology (continuous parameters) is found, 
standard sizes of cross-sections are re-established and the standard dimension 
optimization of cross-sections is then continued until the optimal solution is 
found. 

5 Examples 

5.1 Example 1: three-storey frame 

The first example shows the standard dimension optimization of the three-storey, 
three-bay plane steel frame (see Figure 2). The frame is subjected to the self-
weight, to the uniformly distributed imposed load of 50 kN/m and to the 
concentrated imposed load of 10 kN on each storey. The frame is considered as a 
laterally supported plane frame. The frame superstructure has been generated in 
which all possible structures are embedded by different standard sizes variation. 
The superstructure comprises 24 different standard hot rolled European wide 
flange HEA sections (from HEA 100 to HEA 1000) for each beam and column 
separately. The material used is steel S 355.  
 The optimization was performed by the MINLP optimization approach. The 
MINLP optimization model for steel frames was used. The task of the 
optimization was to find the optimal structure mass. 
 The optimization was carried out by a user-friendly version of the MINLP 
computer package MIPSYN, the successor of PROSYN [1] and TOP [7]. As 
an interface for mathematical modelling and data inputs/outputs GAMS (General 
Algebraic Modelling System), a high level language, was used [8]. The Modified 
OA/ER algorithm and the two-phased optimization were applied (a single 
MINLP), where GAMS/CONOPT2 (Generalized reduced-gradient method) [9] 
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was used to solve NLP subproblems and GAMS/Cplex 7.0 (Branch and Bound) 
[10] was used to solve MILP master problems.  
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Figure 2: Three-storey, three-bay steel frame. 

     The optimization model of the frame contained 1572 (in)equality constraints, 
1552 continuous and 357 binary variables (61 after the prescreening). The final 
optimal solution of 6214 kg was obtained in the 61st main MINLP iteration (the 
subsequent feasible result was not so good). The optimal standard sizes were also 
obtained. Only 152 seconds of CPU time were spent on a 2 GHz PC. The 
optimal structure of the frame is shown in Figure 3.  

5.2 Example 2: single-storey industrial building 

The second example presents the topology and standard dimension optimization 
of a single-storey industrial building. The building is 20 meters wide, 40 meters 
long and 6.5 meters high (see Figure 4). The structure is consisted from equal 
non-sway steel portal frames, which are mutually connected with the purlins.  
 The optimization was performed by the MINLP optimization approach. The 
task of the optimization was to find the optimal structure mass, the optimal 
topology (the optimal number of portal frames and purlins) and optimal standard 
cross-sectional sizes. 
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 Variable imposed loads s = 1.60 kN/m2 (snow) and w = 0.137 kN/m2 (wind) 
are defined as the uniformly distributed surface load in the model input data. 
Both, the horizontal concentrated load at the top of the columns (wind) and the 
vertical uniformly distributed line load on the beams (snow and wind) are 
calculated considering the intermediate distance between the portal frames. 
Internal forces are calculated by the elastic first-order analysis for non-sway 
frame mode. The dimensioning of steel members is performed in accordance 
with Eurocode 3 for the conditions of both ultimate limit state (ULS) and 
serviceability limit state (SLS). 
 

H
EA

 1
80

H
EA

 1
80

H
EA

 1
80

H
EA

 1
80

5.0 m 5.0 m 5.0 m

H
EA

 1
80

H
EA

 1
80

H
EA

 3
40

H
EA

 1
80

H
EA

 3
40

HEA 260 HEA 260 HEA 260

H
EA

 1
80

H
EA

 2
60

H
EA

 2
60

HEA 260 HEA 260 HEA 260

5.
0 

m
5.

0 
m

5.
0 

m

HEA 260 HEA 260HEA 260

15
.0

 m

15.0 m
 

Figure 3: Optimum design of the frame. 

 The portal frame superstructure was generated in which all possible 
structures were embedded by 30 portal frame alternatives and 20 purlin 
alternatives. The superstructure also comprised 24 different standard hot rolled 
European wide flange I beams, i.e. HEA sections (from HEA 100 to HEA 1000) 
for each column, beam and purlin separately. The material used was steel S 355. 
 The optimization model contained 124 (in)equality constraints, 111 
continuous and 122 binary variables (55 after the prescreening). The final 
optimal solution of 62029 kg was obtained in the 3rd main MINLP iteration. The 
optimal result includes the obtained optimal topology of 15 portal frames and 12 
purlins (see Figure 4) as well as the calculated optimal standard sizes of 
columns, beams and purlins (see Figure 5). 
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Figure 4: Optimal design of the single-storey industrial building. 
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Figure 5: Optimal design of the portal frame. 

6 Conclusions 

This paper presents the topology and standard dimension optimization of steel 
frames with rigid beam-to-column connections. The optimization has been 
performed by the Mixed-Integer Non-linear Programming (MINLP) approach. 
The MINLP was found to be very successful optimization technique for solving 
the frame structures. 
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