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Abstract 

A quasistatic problem of thermoelasticity for a solid infinite cylinder with a ring-
shaped crack is considered. The cylinder is enclosed in a rigid thin heat 
absorbing shell with a slip joint which reduces thermal impact. The external 
surface of the shell is subjected to a linear heat transfer by radiation to the 
surroundings. We assumed that the cylinder had initially a temperature changing 
along the radius and the surrounding temperature was a function of time. The 
main result is an expression obtained for the stress intensity factor depending on 
time. Various particular cases are considered obtained both by the authors of this 
paper and by other scientists. An analysis of the dependences of the stress 
intensity factor (SIF) on time shows that with an assigned critical SIF, there are 
minimum and maximum crack sizes below and above which the crack will not 
grow under the given cooling conditions. For these dimensions, the maximum of 
SIF does not reach the critical value. For intermediate crack sizes, growth of the 
crack begins at the moment SIF reaches the critical value. Here, the crack first 
grows irregularly to the size for which at the given moment of time SIF is equal 
to the critical value. Extension of so called “hot ”cracks in a solid cylinder is also 
considered. These cracks arise when a cold cylinder is placed in a fusion of the 
same material at the melted temperature. Further on this cylinder is rapidly taken 
out of the fusion and on its surface the melting layer linked with the cylinder 
surface arise. Under cooling of the cylinder, residual tensile stresses arise in the 
layer which may cause growth of ring-shaped surface cracks which are 
dangerous for further exploitation of this system.           
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1 Introduction 

A solid infinite cylinder of radius rc with an unloaded co-axial ring-shaped crack 
(rd < r < rc) coming to the surface of the cylinder was chosen for crack 
propagation analyses in deformed solids under nonstationary thermal loading. 
We assume that the cylinder is surrounded by the shell with a slip joint, i.e. the 
surfaces of the cylinder and the shell can slide freely relatively to each other to 
the axial direction.  
     It is assumed that the covered cylinder, with a constant initial temperature, is 
cooled over is entire surface through heat exchange with its constant–
temperature environment. In this case, the heat flows are radial and the crack has 
no effect on heat propagation within the cylinder. 

2 Mathematical modeling 

In light of this, the solution of the thermoelastic problem is represented as the 
sum of two solutions, 
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     The first solution, obtained with the assumption that no cracks are present, 
satisfies the equations of thermoelectricity for an infinite cylinder in a 
generalized plain-strain state. This solution satisfies all boundary conditions 
except for those for the edges of the crack, which are loaded by a normal load 
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     Here E is the elastic modulus of the cylinder material; ν is the Poisson ratio; 

αT is the coefficient of lineral expansion; 
λ
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k = d/rc; d – coating width. 
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3 Calculations 

For numeral analyses a solid cylinder of the radius rc = 5⋅10–3 m made of steel 45 
(it’s chemical composition: Fe, 0,42-0,49% C, 0,17-0,37% Si, 0,5-0,8% Mn; ρ = 
7800 kg/m3, c = 470 J/kg⋅K, λ = 50 W/m⋅K) is chosen, coating is made of bronze 
Бр ОФ–10–1, (it’s chemical composition: Cu, 9-11% Sn, 0,8-1,2% P; ρ0 = 8700 
kg/m3, c0 = 380 J/kg⋅K, λ0 = 100 W/m⋅K); it’s width is d = 0,25⋅10–3m. The 
coefficient of heat transfer α0 = 1,5⋅105 W/m2⋅K. The porosity θ = 0,54. Using 
the formula for the porous medium 

λΠ = λ0(1 – 1,5θ) for θ < 0,6                             (3) 
and the formula 
 cΠ = c0(1 – θ)                                       (4) 
 ρΠ = ρ0(1 – θ)                                      (5) 

we obtain: ρΠ = 4000 kg/m3, cΠ = 175 J/kg⋅K, λΠ = 19 W/m⋅K. 
     As a result k = d/rc = 0,05 << 1, ωk = 0,0065, Bi = 5. In the case of covering 
absence (d = 0) we obtain ωk = 0, Bi = α0rc/λ = 15. 
     Figures 1 and 2 show the relations between time Fo = at/ 2

cr  (a – heat 
diffusing) and axial strains *

zzσ  depending on the radius r/rc for the cases of the 
cylinder with the covering (Figure 1) and without it (Figure 2). As we can see 
from the graph on the figures powdery coverings essentially reduce 
thermoelastic stress in cylinder. 
 

 

Figure 1: Diagram for *
zzσ  depending on Fo for different r/rc (without 

covering). 
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Figure 2: Diagram for *
zzσ  depending on Fo for different r/rc (with covering). 

     In the case of plane-strain stress axial displacement is zero in the plane of the 
crack.  
     When added to the first solution, the second solution – from the isothermal 
theory of elasticity – satisfies all boundary conditions including those for the 
crack edges.  
     Because of symmetry conserning the plane of the crack, the second solution is 
for semi – infinite cylinder (z > 0) with mixed boundary conditions on the end – 
wall. Through boundary condition for tangent stress is given on the end – wall. 
The condition of slipping joint leads to zero radial displacement and zero tangent 
stress component.  
     Mathematical setting of the problem is: 

 
T
zz

p
zz σ−=σ  ,                      rd < r < rc,                    z = 0,                   (6) 

 0up
z = ,  0 < r < rd,  z = 0,                   (7) 

 0p
rz =σ  0 < r < rc,  z = 0,                   (8) 

 0p
rz =σ , r = rc,  0 < z < ∞,            (9) 

 0up
r =  r = rc,     0 < z < ∞           (10) 

     According to the problem (6) – (10) the calculation of stress-strain state of the 
cylinder with a ring-shaped crack is fulfilled. This solution allowed to us 
calculate stress intensity factor (SIF) as a criterion of crack propagation [1, 2]. 
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     As is known, the solution of the problem from the isothermal theory of 
elasticity ( )P

i
P
ij u,σ  reduces to finding the function ( )ζρχ , , having the form 
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     Here, λn are the positive roots of the equation of Jl (λ) = 0, ζ = r / rc. The 
boundary conditions for the rigid shell (8),(9),(10) are satisfied identically 
through selection of the function ( )ζρχ , . By substitution 
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the unknown Bn is determined from a pair of the ordinary equations constructed 
from the mixed boundary conditions assigned in the plane of the crack 

( )rF2p
zz µ−=σ , 0 < r < rd,  z = 0,      (13) 

δ−=p
zu , rd < r < rc,  z = 0,      (14) 

 
     Here, µ is the shear modulus, bn are the coefficients of expansion of the 
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displacement along the crack which is determined from the balance condition of 
the cylinder in the plane of the crack. 
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     P is a preset force, applied to the cross-section of the cylinder at infinity. 
     The final solution of this problem reduces to finding the solution of a 
Fredholm equation of the second kind relative to the unknown function g(t) 
independent on δ (in particular δ can be equal to zero). 
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 0 < τ < α, cd rr=α .                                  (16) 
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     Integral equation (16) with respect to g( τ ) was solved by a successive 
approximation technique where function F(r) was approximated by polynomial 
with even degrees from 0 to 8.In this case the maximum approximation error 
which occurs at small Fo is no more than 2 %.Stress intensity factor SIF KI is 
determined according to [3] 

)(g2 rrrK dc
d

I
π

µ=                                         (17)           

 
     In Figure 3 the dependence of stress intensity factor SIF  

( )
( ) πθ−α

ν−
=

0T
2/1

c

I*
I

TEr
1K2

K  

on time for Fo for different ring-shaped crack sizes α = rd/rc in the case of “rigid” 
slip joint where d = 0 is shown. In Figure4 – the same for d = 2,5⋅10–4m. In case 
of “flexible” joint SIF is 12 % larger for the same sizes of the cylinder and the 
shell.  
 
 
 

 

Figure 3: Dependence SIF on time Fo fir different crack sizes (without 
covering). 
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Figure 4: Dependence SIF on time Fo fir different crack sizes (with covering). 

4 Analyses and conclusions 

Let us analyze ring-shaped crack propagation in a covered cylinder starting from 
relation shown in Figure 4. 
     Let us assume critical SIF *

ICK  = 0.136 (horizontal dotted line). Then, for 
example, a very small ring-shaped crack of the size α = 0.95 (the depth is 0.2 
mm) at the moment of time Fo ≈ 0.02 begins to grow unstable, jump-like (point 
a) and passes the sizes from α = 0.95 to α = 0.8 (vertical arrows). After that the 
crack propagates stable (horizontal arrow) as *

IK  reaches it’s critical value *
ICK  

= 0.136. Finally the crack stops at the moment of time Fo = 0.12 (point b) as the 
crack size is α = 0,5 (the depth is 2,5 mm). 
     This fact should be taken into account when covering the cylindrical details 
by powder materials. 
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