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Abstract 

In this paper, a practical orthotropic damage model is developed and tested for 
composite materials during crash. The model uses the Hashin’s failure criteria in 
which the fibre and matrix failures are described explicitly, both in tension and 
compression. A linear softening degradation is proposed and a close-form 
solution of the corresponding damage parameter is provided. 
     To reduce the mesh dependency, an embedded discontinuous element is 
proposed. It is a virtual embedded element in the sense that an actual element is 
divided into two zones, one elastic (undamaged) zone and one localization 
(damaged) zone. Their equivalence is preserved by constraining the kinematics 
and equilibrium equations. Since the damage zone is introduced into the element, 
the corresponding dissipated energy due to damage is fixed, independent of the 
element size.  
     The numerical simulations using the developed damage model show a mesh 
objective result and correlate well with the energy dissipation in dynamic 3-point 
bending experiments. It is concluded that an accurate material calibration is 
crucial for the success of failure simulations. The traditional strain mapping 
cannot be applied to failure problems in which the strain distribution is highly 
non-uniform.  Material parameter calibration should take into account the ratio of 
the failure zone and the gauge length. A practical approximation formula is 
provided. 
Keywords:  composite, damage model, crash simulation, embedded element. 

1 Introduction 

The crash simulation of composites is particularly difficult due to the complexity 
of its physics. First, the failure process involves multiscales and is difficult to 
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observe experimentally. Second, the softening effect leads to the well known 
numerical simulation difficulties, cf. mesh dependency, instability and 
bifurcation. 
     In this paper, a practical orthotropic damage model is developed and tested 
for composite materials during crash. This new model is implemented in LS-
DYNA as a user-defined material model. The related issues such as the mesh 
dependency and material calibrations of the corresponding damage parameters 
are addressed. 

2 Continuum damage constitutive relationship 

For plane stress situations in the continuum damage approach, the effective 
stress σ̂  is related to the total strain ε by the elastic stiffness tensor C0 

εCσ 0ˆ =                                                  (1) 

The effective stress is mapped to the true stress by the damage operator M 
 

σMσ ˆ= ,              
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where D1, D2 and D12 are the damage parameters. Inserting Equation (1) into 
Equation (2) yields 

εCεCMσ == 0                                         (3) 

in which the damaged stiffness tensor C reads 
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21121 ννφ −=                                            (5) 

with E11, E22, G, 12ν and 21ν  are the elasticity parameters of the undamaged 
lamina. Note that when damage occurs (Di>0), the stiffness tensor is not 
symmetric. To preserve a symmetric stiffness tensor, the Poisson’s ratio can be 
related to the damage parameters [3]. 
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3 Hashin’s failure criteria 

Hashin’s criteria [2] refers to an unidirectional fibre reinforced composite with 
five failure modes: 
 
1) Fibre tensile and compression modes 
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2)    Matrix tensile and compression modes 
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3)  Shear mode 
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where X and Y are fiber and matrix strengths and S is the shear strength. Note 
that the compression and tensile modes are treated in the same way. For notation 
simplicity, the sub indexes for the tensile and compression strength parameters 
are omitted. 
     Note that Hashin’s criteria have a complete decoupling of the fibre and matrix 
failure modes from shear failure. Therefore, the failure criteria may overestimate 
the strength of a lamina when shear is present. However, it should be mentioned 
that measuring the softening part of the stress-strain curve is very difficult even 
in a uniaxial test condition. A multi-axial loading surface is almost impossible to 
be validated. Furthermore, the damage evolution or degradation law is, in most 
cases, in an uncoupled fashion. Therefore, it is convenient to treat all failure 
criteria to be independent. 
     It must be emphasised that although the failure modes and the degradation 
law (which will be introduced in the next section) are decoupled, the complete 
stress-strain relationship still contains a coupling due to the stiffness matrix C 
(see Equation 3).  

4 Degradation rule 

Damage occurs when one of the Hashin’s criteria is satisfied. For simplicity, we 
assume a linear degradation law (see Figure 1) after the initial strength σ0 is 
exceeded. Consequently, the damage parameter D can be determined by the 
following relationship 

( ) ( )000 1)( εεσεεσ −−=−== hDEDE                (9) 
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where E0 is the elastic modulus, ε0 = σ0/E0 the initial failure strain and h is the 
softening parameter, respectively.  
 

 

Figure 1: A linear stiffness degradation. 

It must be emphasised that Equation (9) holds for materials in the localisation 
zone. Two issues related to this localisation problem should be addressed: 
 
1) The material calibration of localisation related parameters such as the 

softening parameter h and the final failure strain εf. Note that the strain field 
is not uniform as soon as localisation occurs. Therefore, the standard strain 
mapping in uniaxial tensile examples: ε = u/L where L is the gauge length 
and u the deformation, is not valid. The results of the experiments should be 
interpreted carefully. 

2) The mesh dependent problem. For a tensile bar with a uniform cross section 
area A, only one element will follow the failure path. Consequently, the total 
dissipation energy of the tensile bar reads 

                 ( ) lW fdiss 002
1 εεσ −= A                                (10) 

where l is the length of the failure element. Clearly, the energy dissipation is 
dependent on the element size and, therefore, the simulation result is mesh 
dependent.  

 
     These two issues will be discussed in the next section. First, the mesh 
dependence problem is solved by introducing a localisation zone into a standard 
finite element. Next, the corresponding localisation related parameters are 
investigated and their relationships are outlined. Finally, formula will be 
provided for practical approximation of the final failure strain and the softening 
parameter. 
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Figure 2: Embedded localisation element (left) and its equivalent element 
(right). 

5 Embedded localization element 

To reduce the mesh dependency, an embedded discontinuous element is 
proposed. It is a virtual embedded element in the sense that an actual element is 
divided into two zones, one elastic (undamaged) zone and one localization 
(damaged) zone. Their equivalence is preserved by constraining the kinematics 
and equilibrium equations. Since the damage zone is introduced into the element, 
the corresponding dissipated energy due to damage is fixed, independent of the 
element size. Therefore, mesh dependency with respect to dissipated energy can 
be removed. 
     Assume that the length of the damage zone is ξ and the length of the element 
is L, see Figure 2. When damage occurs, the strain localised in the damage zone 
is εh and the strain at the elastic zone is εe. If we smear the localisation zone and 
make an equivalent element, the following kinematics and equilibrium equations 
must be satisfied 

( ) uLL eh ==−+ εεξεξ                                       (11) 

σεεε === Lhhe EEE0                                       (12) 

where E0 is the elastic modulus, Eh the stiffness at the damage zone and EL the 
equivalent (element) elastic modulus, respectively 

( ) EdEh −= 1                                           (13) 

( )EDEL −= 1                                           (14) 
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Note that d and D are damage parameters of the embedded localisation element 
and the equivalent element, respectively. 
     From Equations (11-14) the localisation strain εh can be related to the 
equivalent (element) strain ε 

( ) L
r

rdh
ξεε =

−+
= ,

11
                               (15) 

and the local damage parameter d can be evaluated and then transferred to the 
global (element) damage parameter 

( )11 −+
=

rd
rdD                                         (16) 

Note that the localisation strain εh is a function of damage parameter d. This local 
damage parameter can be determined by inserting Equations (13)–(15) into the 
linear softening law (9) 
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With a known element strain ε, the local damage parameter can be directly 
determined. This is the advantage of a linear softening assumption, which makes 
the stress update simple and straightforward.  
     Note that the softening parameters should be carefully calibrated. The 
traditional strain mapping cannot be applied to failure problems in which the 
strain distribution is highly non-uniform.  Material parameter calibration should 
take into account the ratio of the failure zone and the gauge length. 
     For the final failure, d=D=1, from Equation (15), the local failure strain εf and 
the element failure strain χ have relationship 

rf
χε =     

L
r ξ
=                                         (18) 

Suppose one uses one element to simulate a tensile bar with a gauge length L. 
The material failure strain εf reads 

ξξ
χε u

L
uL

rf ===                                        (19) 

where ξ is the length of the damage zone. Note that the material failure strain is 
obtained by dividing the deformation by the length of the damage zone and not 
the gauge length.  
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6 Numerical simulations 

6.1 Mesh sensitivity analysis 

A mesh sensitivity analysis is performed by simulating the fracture behaviour of 
the juvenile part of a dogbone specimen with a multi-element FE model. Three 
different meshes are used with element size of 2 mm, 1 mm and 0.5 mm for 
mesh 1, 2 and 3, respectively (see Figure 3).  
     The same material data are used for the LS-DYNA material model 58 and the 
new user-defined material model (with the assumption that the failure zone is 
equal to 0.1 mm). 
     In Figure 4 the results of the mesh sensitivity analysis are plotted. Clearly, the 
global force is independent on the mesh size. 
 

 
Figure 3: Mesh sensitivity analysis: three meshes with element size 2 mm 

(left), 1 mm (middle) and 0.5 mm (right). 

 

Figure 4: Mesh sensitivity analysis for the LS-DYNA material model 58 
(left) and the user-defined model (right).  

High Performance Structures and Materials III  517

 © 2006 WIT PressWIT Transactions on The Built Environment, Vol 85,
 www.witpress.com, ISSN 1743-3509 (on-line) 



6.2 Three-point bending tests 

Next, numerical simulations on three-point bending experiments were performed 
using the new developed composite model. These US bumper standard 
experiments (NHTSA 49 CFR Part 581: Bumper Standard) were performed on 
U-shaped GMT bumper beams with an aluminum impactor having a total mass 
778 kg and initial impact velocity of 2.30 m/s. 
 

 

Figure 5: FE model for the three-point bending tests on composite U-beams. 
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Figure 6: Force-deflection curves from test and simulation for the dynamic 
three-point bending experiments on composite U-beams. 
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     The FE model of the experimental set-up is plotted in Figure 5. The same 
material parameters are used for the LS-DYNA material model 58 and the new 
user-defined material model. 
     In Figure 6 the contact forces for the experiment and numerical simulations 
are plotted (all data are filtered with a CFC60 filter).  Both models predict the 
shape of the force-deflection curve accurate until the onset of failure. It is 
observed that the new user-defined material model captures the softening range 
better than the original LS-DYNA material model 58. 

7 Conclusions 

An orthotropic damage model is developed and tested for composite materials. 
The model uses the Hashin’s failure criteria in which the fibre and matrix 
failures are described explicitly, both in tension and compression. A linear 
softening degradation is proposed and a close-form solution of the corresponding 
damage parameter is provided. This new model is implemented in LS-DYNA as 
a user-defined material model. 
     To reduce the mesh dependency, an embedded discontinuous element is 
proposed. It is a virtual embedded element in the sense that an actual element is 
divided into two zones, one elastic (undamaged) zone and one localisation 
(damaged) zone. Their equivalence is preserved by constraining the kinematics 
and equilibrium equations. Since the damage zone is introduced into the element, 
the corresponding dissipated energy due to damage is fixed, independent on the 
element size. Therefore, mesh dependency with respect to the dissipated energy 
is removed.  
     It is concluded that an accurate material calibration is crucial for successful 
failure simulations. The traditional strain mapping cannot be applied to failure 
problems in which the strain distribution is highly non-uniform. Material 
parameter calibration should take into account the ratio of the failure zone and 
the gauge length. A practical approximation formula is provided. 
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