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Abstract 

Cold-drawn steel wires have the excellent mechanical properties of strength and 
toughness and are widely used in prestressed concrete structures. During      
cold-drawn operations residual stresses are generated in steel wires. In this paper, 
by the residual stress distribution from the finite element analysis (FEA), a 
weight function method (WFM) has been used to evaluate the effective stress 
intensity factors (SIFs) for cracked cold-drawn steel wires under tensile loading. 
The calculation results have been compared with those obtained by the          
two-dimensional (2D) FEA, which considers the residual stress redistribution in 
the presence of a crack. In the present study, the effective SIFs calculated using 
the WFM have shown a good agreement with those derived from the 2D FEA. 
Keywords: stress intensity factor, residual stress, weight function, cold-drawn 
steel wire, finite element analysis. 

1 Introduction 

In the cold-drawn procedure, the tensile strength and toughness of steel wires 
increase, but a residual stress field also appears in them. After the treatment of a 
further drawing with a very small area reduction or a combination of heating and 
stretching the wire, the decreased residual tensile stresses still exist in the steel 
wire surface [1]. It is well known that the presence of residual tensile stresses 
will reduce the fatigue life of steel wires. With increasing in residual tensile 
stresses, the fatigue crack growth rate increases for stress ranges close to the 
fatigue limit [2]. The calculation of the SIF is one of key factors in fatigue life 
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determination of the components. The superposition principle, which assumes 
that the stresses applied by external loading superimpose linearly on residual 
stresses, can be used to calculate the effective SIFs in a cracked body in which a 
residual stress field acts [3]. If the weight function, which depends only on the 
geometry of the body, is obtained, the contribution of residual stresses on the 
effective SIFs for cracks in mode I can be determined by the WFM [4]. As for 
cold-drawn steel wires under tensile loading, the net stresses in the steel wires 
under service loading remain tensile. When a crack is produced such that it lies 
wholly in a tensile region the faces of the crack will remain fully open and the 
applicability of the linear superposition principle is valid [5]. Additionally, the 
produced crack will bring the residual stresses ahead of a crack tip to 
redistribute, [5,6]. So, the availability of the WFM, which assumes that the 
residual stress distribution keeps invariable, must be validated when dealing with 
residual stresses and fatigue crack growth.  

In this paper, the 2D FEA, which considers the residual stress redistribution 
in the presence of a crack, is carried out to validate the WFM for calculations of 
effective SIF for cracked cold-drawn steel wires under tensile loading. Section 2 
presents the 2D model for the cracked steel wire. Calculations of the effective 
SIF by the weight function analysis are described in Section 3 and by the 2D 
FEA in Section 4. Section 5 gives the corresponding analysis results and 
discussion. The present work is concluded in Section 6. 
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Figure 1: 3D geometry and 2D model of a wire used in the analysis. 

2 Two-dimensional model 

The surface crack of the cold-drawn steel wires produced by mechanical fatigue 
can be assumed to be a semi-elliptical geometry (a/b<1, a is the crack depth or 
minor axis of the ellipse, b the major axis of the ellipse), perpendicular to the 
tensile loading direction [7], as show in fig. 1(a), 1(b), and the maximum SIF 
value was obtained at the crack center C, according to the results given by 
Astiz [8]. Following a well known purely linear elastic solution in the vicinity of 
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a 3D crack with an arbitrary curved front [9], the calculation of the SIF can be 
based on 2D plane strain hypothesis on the longitudinal section of a cracked 
cold-drawn steel wire under tensile loading, fig. 1(c). 

3 Weight function analysis 

As for a cracked cold-drawn steel wire under tensile loading, the effective SIF at 
the crack front is decided by the combined effect of local residual stresses and 
the stresses applied by external loading. According to the linear superposition 
principle, the effective SIF (Keff) is the algebraic sum of the external SIF (Kapp) 
due to the external applied loads and the residual SIF (Kres) due to the residual 
stresses, and can be expressed as: 

resappeff KKK +=                                             (1) 

3.1 Residual SIF 

It is well known that, once the weight function is determined for a particular 
cracked body, the SIFs can be obtained for any stress field by an appropriate 
integration. So, in this section, the WFM is used to evaluate the residual SIF 
(Kres).  

Based on the FEA [1], the distribution of the residual stresses for cold-
drawn steel wires with a thermomechanical treatment is shown in fig. 2, where r 
is the polar coordinate of the wire and R the radius of the wire, and the equation 
used for the calculation of the residual stresses in the plane problem is as 
follows: 

( ) ( )32 933133849878841171235 Rr.Rr.Rr..)Rr(res ⋅+⋅−⋅+−=σ  

( ) ( ) .Rr.Rr. 54 931029623257 ⋅+⋅−                                      (2) 
In the edge-cracked 2D model, fig. 1c, a residual SIF can be calculated by 

integrating the weight function m(x,a) and the residual stress distribution σres(x)  
acting on the crack length a [10], which is expressed as follows: 

∫=
a

resres dx)a,x(m)x(K
0

σ                                     (3) 
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Figure 2: Residual stress distribution for a steel wire used in the analysis. 
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The analytical weight function for an edge crack in a finite width plate, as 
shown in fig. 3, was given by Kaya and Erdogan [11]: 
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Figure 3: Weight function notation for an edge crack in a finite width plate. 
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3.2 External SIF 

An empirical solution of the SIF for a single edge cracked plate applied under 
the axial stress, fig. 1(c), given by Tada et al. [12] is used to calculate the 
external SIF (Kapp), which is expressed as follows: 

)Da(FaK appapp ⋅= πσ                                    (5) 
where σapp is the external applied stress, D the diameter of the steel wire and F 
(a/D) given by: 
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Figure 4: 2D finite element model. 

4 Finite element analysis  

4.1 2D finite element model 

2D finite element model of the cracked steel wire was developed for numerical 
stress analysis. A detail of a typical mesh was shown in fig. 4. A different mesh 
was used for each crack length to present the equivalent level of mesh 
refinement. The ABAQUS finite element program [13] was chosen for the 
present analysis. 8-node biquadratic solid element for plane strain available in 
the ABAQUS code element library was used in the model, and the quarter point 
technique, used for numerical evaluation of the SIF, was applied to improve 
precision of the results. Due to symmetry, as shown in fig. 1(c), only the top 
half-plane was modelled for the specimen with a homogeneous linear elastic 
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material using a Young’s modulus, E, of 207 GPa, Poisson’s ratio,υ, of 0.3 and 
Limit strength, fptk, of 1940 MPa .  

The SIF for the elastic singular stress field was calculated by means of the 
J-integral for 10 different paths, which was obtained using the domain integral 
formulation in ABAQUS. Calculations coupled with the residual stress field 
were carried out for each crack length. Two levels of applied loading, σapp= 0.4 
and 0.7fptk, were employed and applied to the top edge of the model. From the 
average J-integral value, the effective SIF was computed. 

4.2 Verification of the finite element model 

In order to verify the finite element model’s accuracy to calculate SIFs for 
different crack lengths, comparisons between these solutions and empirical 
solutions given by eqn. (5) were made only under tension loading. The 
normalised SIF, aK appI πσ , is presented in fig. 5, showing a fairly good 
agreement and all differences being within 1%. Based on these results, the 
present finite element model was considered suitable for the 2D analysis of 
cracked cold-drawn steel wires under tensile loading. 
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Figure 5: Comparison of aK appI πσ between FEM and Tada et al.’s 
calculations. 

4.3 Residual stresses 

The initial stress method illustrated by Lei et al. [14] can be used to introduce a 
residual stress distribution into the finite element model as an initial condition, 
and a fine mesh has been employed to provide for an accurate description of the 
residual stress distribution in the model. But the introduced residual stresses are 
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not self-equilibrating; usually resulting in a stress distribution that differs 
significantly from desired one. This problem was overcome by using two load 
steps in the linear elastic analysis. In the first step, reactions required to balance 
the out-of-balance load vector caused by the residual stresses were derived with 
all degrees of freedom constrained and no other applied loadings. In the second 
step, the obtained reactions were converted to applied force, and an equilibrium 
step analysis was executed for the uncracked model with the standard boundary 
conditions. After this procedure, the contour of the residual stresses (unit: MPa) 
is presented in fig. 6. It is shown that the residual stress distribution in the 
uncracked model accords well with the target distribution shown in fig. 2. 
 

 

Figure 6: Contour of residual stresses in the uncracked model. 

4.4 Residual stress redistribution 

After the residual stresses are introduced into the uncracked model, a crack can 
be introduced into the FE model by releasing nodes located on the crack face 
until the desired crack length is reached. When a node is released from its 
displacement constraint, the reactions previously acting on the node disappear, 
and moreover, the equilibrium state in the elements around the node is also 
changed. Subsequently, a new equilibrium state is re-established. The shift of the 
equilibrium state will bring the residual stresses in these elements to redistribute.  

5 Analysis results and discussion 

Both the WFM and the FEM described above were used to evaluate the variation 
of the effective SIF as a function of the crack length. The effective SIFs 
calculated from the WFM and those derived from the FEA are compared in fig. 7 
for seven different crack lengths. From this figure, one can find that, for different 
crack lengths under two loading levels, the maximum difference in values 
between the two methods is 0.87%, which exhibits a good mutual agreement. 
Comparison results between the FEA and the WFM showed that, when 
calculating effective SIFs with a linear elastic analysis for cracked cold-drawn 
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steel wires under tensile loading, the phenomenon of redistribution was not 
obvious to residual stress problems, which keeps a good agreement with the 
results for cold-worked cracked holes given by Moreira et al. [15]. 
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Figure 7: Comparison of residual SIF between weight function and finite 
element results. 

6 Conclusions 

In this paper, we have demonstrated that, according to the obtained residual 
stress fields from documents, the effective SIF can be calculated for a cracked 
body using either the WFM or the FEA. The following conclusion can be drawn:  
the reliability of the WFM results is demonstrated by comparing with FE 
calculations, and the complexity of the analysis is remarkably reduced. 
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