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Abstract 

This paper deals with the characterization of the static mechanical behaviour of 
an energetic material. Due to the constituents (crystals and a polymeric binder), 
the behaviour is influenced by the pressure, the temperature and the strain rate. 
The temperature, considered varying slowly, is a parameter and the 
computational problems are uncoupled. Therefore, a complete experimental 
protocol and a model have been developed. Inspired from the Visco-Scram 
model, the behaviour is described using a general Maxwell model in which all 
the branches are affected by an isotropic damage. The first branch takes into 
account elastic-plastic behaviour. The yield stress is given by a parabolic 
criterion, characterized using compressive, tensile and tri-axial tests. The 
hardening is isotropic and the plastic flow rule is nonassociated. The other 
branches are viscoelastic. A genetic algorithm is used to optimise the viscoelastic 
parameters, previously obtained using DMA measurements. Comparisons 
between the model and experiments are proposed for different temperatures, 
strain rates and pressures. At last, a user material subroutine has been developed 
in Abaqus Standard and finite element computations of the Brazilian test are 
compared to the experimental response. 
Keywords:  energetic material, parabolic plastic criterion, genetic algorithm, 
DMA, viscoelasticity, Isotropic damage, Brazilian tests. 
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1 Introduction 

The material is made of organic and energetic crystals mixed with a few 
percentage of a polymeric binder. After an isostatic compaction forming process, 
the material has a small porosity of a few percent. Samples can be machined in 
several geometric shapes, which are more than ten times the length of the 
material heterogeneity. 

In order to survey the possible aging of this material, an accurate 
determination of the mechanical properties has to be done. Unfortunately, this 
material being available in small amounts, the characterization must be made 
using a reduced number of standard tests. An unusual experimental procedure is 
proposed in this paper for this kind of material. When monotonic loading paths 
were used to determine for example the influence of the strain rate, each sample 
is submitted to complex loading paths including relaxation, recovery and cyclic 
conditions. 

The observation of loading-unloading diagram on figure 1 shows some of 
the main features of the material at room temperature, and entails specific 
arrangements for the mechanical tests. 1) Hydrostatic pressure sensitivity: to 
consider it, an initial hydrostatic loading path (0 MPa, 5 MPa and 10 MPa) is 
made before the run of a uniaxial compression load. 2) Viscosity: different strain 
rates (5.10-6 s-1 to 10-3 s-1) have been used to observe such effect. The parameters 
of the viscoelastic part of the behaviour have been determined using a DMA 
apparatus (Dynamic Mechanical Analysis). 3) The plastic strains are determined 
using relaxation and recovery delays. 4) Initial elastic behaviour: standard tests 
made in various material directions show an initial isotropic behaviour. 
5) Damaging: systematic cyclic loading-unloading programs have been 
performed. 6) Dispersion: to ensure a minimum statistical validity, each loading 
program is repeated five times. 

The temperature is considered as a parameter in the model. The material 
been temperature dependent, compressive and tensile tests are perform at four 
different temperatures: 5°C, 20°C, 35°C and 50°C. The figure 2 shows the effect 
of the temperature on monotonic compressive experiments. 

The main models available in the literature ([1–3]) for this kind of material 
have been developed for transient dynamic behaviour and are not adapted for a 
quasi-static study. For example, the influence of the pressure is omitted, even as 
the difference of behaviour observed in tension and compression loading paths. 
The Maxwell model we have chosen (fig. 3) is close to the constitutive law 
proposed in [2]. Several damageable viscoelastic branches and one damageable 
elastoplastic branch are used. The main difference with the Bennett and co-
workers model is the presence of the elastoplastic branch. 

The determination of the plastic (resp. viscoelastic) behaviour is described 
in the second (resp. third) part of this paper. In particular, a genetic algorithm has 
been used to optimize the determination of the viscoelastic parameters. The 
fourth part deals with the damage rule. It can be noted that the characterization of 
the plasticity, the damage and the viscosity are uncoupled. The damage rule is 
assumed to affect also the viscoelastic branches. 
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Lastly, some comparisons are presented between the model response and 
the available experimental data. 
 

 

Figure 1: Cyclic tests for a given 
strain rate: pressure effect 
on the global responses of 
the material (20°C). 

 

Figure 2: Compressive tests for a 
given strain rate: 
temperature effects. 

 

 
 
 

 
 
 
 
 
 

Figure 3: Rheologic diagram of the viscoelastic plastic damageable model. 

The test procedure is described in [4]. The first stage (when this one exist) 
of the loading program is a hydrostatic loading phase. Then, five or six uniaxial 
loading-relaxation-unloading-recovery cycles are done. The test is driven by one 
of the two longitudinal gages. Relaxation times have been defined to guarantee 
an almost complete relaxation of viscous stresses. All the tensile tests and the 
compressive tests have been done for several temperatures (5°C, 20°C, 35°C and 
50°C). 

Some compressive DMA experiments have been realized using samples of 
50 mm long, and a cross section of 4x4 mm2. A small initial preload of 10 µm 
and a strain amplitude of 5 µm are used to stay in the viscoelastic domain.  
The range of frequencies going from 0.004 to 40 Hz, the strain rate ranges from 
2.10-6 s-1 to 2.10-2 s-1. 
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2 Elastoplasticity 

The macroscopic stress tensor σ  is defined as the sum of the stress of each 
branch: 

 ∑
=

+=
n

j
jep

1
σσσ , (1) 

where the subscript “ep” (resp. “j”) denoted the elastoplastic branch (resp. the jth 
viscoelastic branch). An additive decomposition is assumed for the strain 
mechanical part (superscript “m”) and the strain thermal part (superscript “th”): 
 thm εεε += . (2) 

An additive decomposition of the mechanical strain of each branch is also 
assumed between: an elastic part (superscript “e”) and a plastic (superscript “p”) 
part (resp. viscous) (superscript “p” or “v”): 
 p

ep
e
ep

m εεε += elasto-plastic branch, (3) 
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j

e
j

m εεε += visco-elastic branches. (4) 

2.1 Thermo-elasticity 

The elastic part is supposed linear damageable and given by the following 
equation: 
 e

epep d εθσ :)()1( E−= , (5) 

where )(θE is the elastic tensor of the virgin material and is defined as a 
function of the temperature, and d a damage parameter (see below). To identify 
the elastic mechanism, we need to isolate the elastoplastic behaviour (in 
particular to be sure that the viscous stresses are relaxed). To this end, the ends 
of the relaxation and recovery phases are used to determine the elastic modulus. 
The initial Young’s modulus Eep is a function of the temperature and is defined 
in the table 1. 

A value of 0,3 is obtained for the Poisson’s ratio for all the temperatures, 
using longitudinal and transversal strain measurements. This ratio is used for all 
the viscoelastic branches. The thermal expansion coefficient is c = 50.10-6 K-1. 

Table 1:  Temperature dependency of the Young modulus. 

Temperatures 5°C 20°C 35°C 50°C 
Initial Young modulus Eep (MPa) 3400 2900 2700 2450 

2.2 Yield criterion 

A review of the main criteria used to describe isotropic plasticity is presented in 
[4]. A criterion has been developed at Cambridge University in view of soil 
modeling and is famous today as the “Cam-clay” model [5]. Numerous 
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adaptations of this model were then developed for various applications [6–8]. As 
the forming process of the material is an isostatic compaction up to a pressure of 
200 MPa (which amplitude will never be reached in quasi-static applications), 
the criteria is supposed open on the hydrostatic negative axis. Open threshold are 
usually derived from Mohr-Coulomb, Mises-Schleicher [9], Drucker-Prager [10] 
and more recently Hoek-Brown formulations [11]. Raghava et al. [12] applied 
the Mises-Schlecher‘s threshold to polymers. The evolution of this criterion is 
described by two hardening variables, associated to tensile and compressive 
response. Lastly, a unified model is proposed by Aubertin and Li [5] in order to 
reproduce all the kinds of criterion (elliptic, parabolic, hyperbolic). 

Due to a lack of data about the nature of the hardening mechanisms, an 
isotropic hardening parameter, denoted k, is introduced in the model. Then, a 
saturation of the hardening mechanism at the maximum stress is taken into 
account in the model. A nonlinear plasticity criterion reproduces the evolution of 
the yield stress (fig. 4). The following relation is used: 

 ( ) 0,, =−= kkPQf eqσ                  with            P
kX

k
Qeq )(

2
2 +=σ , (6) 

where DDQ σσ :)31(=  is the octahedric stress, Dσ  the deviatoric stress 
and P the pressure. The set of yield curves is completely defined as soon as the 
function X(k) and the hardening law are defined. 

The following guidelines help for the determination of the function X(k). 
First, it is assumed that the yield curves do not cross themselves in the P-Q 
plane, each one being embedded in those of higher levels, all of them being 
embedded in the extreme curve. This is a necessary - but not sufficient - 
condition for the phenomenon to be governed by a unique state variable which is 
the isotropic strain-hardening parameter. Elementary algebra shows that the 
following relation satisfies the previous assumption: 
 

 
0

0
00 )()(

kk
kk

XXXkX
m

m −

−
−+= , (7) 

where the parameter X0 = 1,5 MPa, positioning the summits of the initial 
parabola, is supposed not being temperature depending, and the three parameters 
Xm, k0 and km are temperature depending. The Xm and km parameters are 
determined using the ultimate yield stress curve relating the maximum stress 
states in the P-Q plane. The values are given table 2. 

Table 2:  Temperature dependency of the hardening parameters. 

Temperatures 5°C 20°C 35°C 50°C 
Xm (MPa) 1,635 1,620 1,610 1,592 
k0 (MPa) 0,80 0,55 0,45 0,35 
km(MPa) 3,88 3,5 3,26 2,82 

c1 700 500 500 500 
c2 150000 100000 100000 90000 
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The hardening parameter k has to be related to an effective plastic strain 
variable, denoted p. In order to obtain a unique curve k(p) for all the available 
experimental data, p is defined as the cumulated deviatoric plastic strain (fig. 5). 

 

 

Figure 4: Initial and saturated yield criterions for the different temperatures. 

 

Figure 5: Hardening parameter k versus the effective plastic strain p for the 
different temperatures. 

For the hardening law, the following hyperbolic relation is used to interpolate the 
data: 
 

 ( )0 0 2
1 2

1( ) 1
1mk p k k k
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 (8) 

 

where c1 and c2 are two parameters temperature depending (table 2). 
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2.3 Flow rule 

The flow direction is determined using the ratio between volumic and deviatoric 
effective plastic strain rates. This ratio, usually called “dilatancy” and denoted β, 
is given by the following relation: 
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pD
epε being the deviatoric plastic strain rates. 

The flow rule expression is then: 
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λ  being the plastic multiplier and the plastic flow direction being normalized. 
The dilatancy β is characterized from the experimental results as a constant 
(β = 0,15). As a result, a nonassociated plastic law is justified. 

3 Viscoelasticity 

3.1 Dynamic Mechanical Analysis 

DMA experiments are used to make a first identification of the linear 
viscoelastic parameters. The stress response to a unit sinusoidal strain solicitation 
for this kind of model can be break up in an in-phase part (related to the storage 
modulus Estor) and an out of phase part (related to the loss modulus Eloss). The 
analytical response of a generalized Maxwell model is known and depends of the 
distributions of the Young modulus (Ej) values and of the viscosity parameters 
(ηj) values. In order to limit the number of parameters (here n = 10 branches) for 
a more accurate determination, the following relations are proposed from the 
DMA results [4]: 
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Then, the number of unknowns decreases to five (A1 to A5). These relations allow 
reproducing at the same time the storage and the loss modulus. 

3.2 Genetic algorithm 

The previous set of parameters is used here to determine the bounds of each 
parameter. We are in the case of a combinatory optimisation problem where a 
large number of solutions could be suitable. We have chosen to perform an 
inverse identification of the viscoelasticity parameters directly from the 
experimental tests. Classical optimisation methods, like conjugated gradient, 
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have been dismissed because of the possible large number of solutions. Then, a 
genetic algorithm [13] has been used in this study. 

Genetic algorithms are based on the Darwinian principle of “survival to the 
fittest”. An initial population of a given size is created from a random selection 
of parameters values. Each parameter set represents individual chromosomes. 
Each individual is assigned of a fitness based on how well each individual 
chromosome allows it to perform in its environment. The algorithm produces 
new generations by applying three evolution operators: selection, crossover and 
mutation. For each generation, the fit individuals survive and the weak die. 
Evolution operators create new individuals (children) from two selected parents, 
and these children replace the weak individuals for the next generation. 
Successive generations are created until very fit individuals are obtained. This 
algorithm offers the advantage of exploring all the solutions space to find a 
global optimum of an optimization problem. A sensitivity analysis of the 
parameters is not required. 

3.3 Objective function 

The objective function is a direct measure of the quality of a solution. The goal is 
here to minimize the gap between the experimental strain-stress curves and the 
corresponding simulated curves. Due to different times of recording during the 

weighted by the segment length Li between two consecutive data, in the stress-
strain space, i.e.: 
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where superscripts “s” and “e” respectively denote simulations and experiments. 

3.4 Results 

The simulation uses the data corresponding at the end of load, the end of 
relaxation, the end of discharge and the end of recovery. From the values of the 
longitudinal strain and time in these points, the strain rate is rebuilt, constant by 
piece. The strain increment is then given from the strain rate and the step of time 
of the program. 

At 20°C, all the tests (compressive tests with different strain rates, tensile 
tests and triaxial tests) are used to optimise the five parameters Ai. 60 generations 
constituted of 500 individuals have been performed and leads to the optimized 
values of the five Ai parameters at 20°C. The restricted quantity of material does 
not allow making all those tests for all the tested temperatures. So, for the 5, 35 
and 50°C temperature values, only the tensile and compressive tests, for only one 
strain rate, are done. Therefore, we supposed that the temperature dependency of 
the Young modulus of the viscoplastic branches is the same that the elastoplastic 
branch one: ).()( EEE epjepj °°= θθ
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Therefore, for the tests at 5°C, 35°C and 50°C, only the parameters A1 and 
A2 have to be identified with the genetic algorithm. The results are presented in 
the table 3. 

Table 3:  Temperature dependency of Ai parameters defining the ηj viscosity 
parameters. 

Temperature 5°C 20°C 35°C 50°C 
Tests com-
puted from: 

Compressive, 
one strain rate 

All Tensile/Compressive,
one strain rate 

Tensile/Compressive, 
one strain rate 

A1 2,78 3,98 2,15 2,62 
A2 2,63 1,64 2,60 2,32 
A3  160,31   
A4  16,15   
A5  1,21   

4 Isotropic damage 

Assuming an isotropic damage, experimental data shows that the phenomenon 
regularly increases with the highest positive principal strain (fig. 6). This 
observation indicates that the most probable damaging mechanism is the result of 
the development of internal micro-defects (cavities, cracks) with tension [14–
18]. A damaging factor d is classically defined as: 

 
0

0

E
EE

d
−

= , (13) 

where Eo and E are the initial and current Young’s modulus. A constant 
Poisson’s ratio is assumed here. 

 

Figure 6: Damage versus the maximum positive strain. 

Experimental values of d immediately result from the measurements of E. 
An hyperbolic relation, eqn. (14), is used to reproduce an average evolution of 

High Performance Structures and Materials III  219

 © 2006 WIT PressWIT Transactions on The Built Environment, Vol 85,
 www.witpress.com, ISSN 1743-3509 (on-line) 



the damaging factor, providing that its value is bounded to 1; d1, d2 and d3 are 
three parameters. The subscript “+” means “the positive part”. 
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The damage rule is reported in the fig. 6. One can see that the model 
response is identified using the compression measurements. The hydrostatic data 
are not taken into account because the pressure stops an eventually growth of the 
microcavities. The introduction of a second damage mechanism, as proposed in 
[19], to model the tensile damage is in study. The identified values are the same 
for all the temperatures: d1 = 0,5, d2 = 0,75 and d3 = 75. 

5 Model versus experiments 

The constitutive law has been implemented in the finite element code 
Abaqus/standard. The model is compared to experimental data with unloading 
cycles to access to the plasticity level and the damage level. Those seem quite 
well reproduced even if the transversal model response does not present enough 
damage in compression (fig. 7–8). This observation can be associated to an 
anisotropic damage (which has been neglected here). 
 

  

Figure 7: Compressive test (3.10-6 s-1;
20°C); model versus 
experiment. 

Figure 8: Compressive test (1.5 10-

3 s-1; 20°C); model versus 
experiment. 

 
The plasticity branch reproduces very well the pressure effect that causes 

the difference between tensile and compressive responses (fig. 7, 9, 10). The rate 
effect is also quite well reproduced on the two compressive tests even if the 
unloading curves do not present the same nonlinearity (fig. 7–8). In the same 
manner, the viscous effects in the triaxial test with 10 MPa of confinement 
pressure (fig. 10) is underestimated. Certainly, these phenomenons is associated 
to an internal friction in the material or a viscosity pressure dependency. The 
pressure dependency is certainly the reason of the discontinuity of the Ai 
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parameters at 20°C (table 3), temperature for which all the tests are computed 
and in particular the triaxial ones. 
 

 

Figure 9: Tensile test (3.10-5 s-1);
model versus experiment. 

Figure 10: Triaxial test (3.10-5 s-1; 
20°C); model versus 
experiment. 

 

Figure 11: Global response of the Brazilian test; model versus experiment. 

The temperature dependency of the model parameters gives a quite good 
adequacy of the model versus the experimental results (fig. 9). 

The implementation of the constitutive law in the finite element code 
Abaqus has allowed one to compare simulations to more complex experimental 
configurations as three-point bend tests and Brazilian experiments. The global 
response of the compression diametrical test is given in fig. 11. One can see that 
too much nonlinearity appears in the model response. This point is in study, the 
three-point bend test giving providing first answers. 

6 Conclusion 

An experimental procedure has been carried out to characterize a complex 
material behaviour. A multibranch viscoelastic plastic and damageable model 
and the corresponding identification procedure have been developed. A genetic 
algorithm optimisation has one allowed to find accurately some of the viscous 
parameters. This model has been implemented in the finite elements software 
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Abaqus using a user subroutine UMAT. The comparisons between simulations 
and experiments show a good agreement. Our future works are now devoted to 
the improvement of the damage rule and of the failure threshold. Lastly, the 
anisotropy observed during the experiments has to be introduced in the model. 
The pressure dependency of the viscosity is in study. 
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