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Abstract

A class of heterogeneous material systems often regarded as random or imperfect
composites is addressed in this paper. The literature now offers a number of con-
tributions that open the way to the analysis of large material systems with com-
plex microstructures while taking advantage of popular micromechanics based
approaches building on periodicity and first order homogenization techniques.
Until recently the attention has been mostly limited to rather classical material
systems such as unidirectional fibrous composites and textiles with emphasis on
various types of imperfections developed during fabrication process on both micro-
scale (level of fiber bundles) and meso-scale (level of textile geometry). From the
basic mechanics point of view, however, it appears logical to exploit the essential
principles of the proposed procedures in bridging the gap between mechanical and
civil engineering applications. In this regard, historical masonry structures classi-
fied as systems composed of more than one material component serve as a typical
example of civil engineering applications, which may benefit from standard first
order homogenization schemes extended to account for possibly irregular arrange-
ment of individual stone blocks. In this contribution, both groups of material sys-
tems will be treated on the same footing demonstrating the applicability of basic
homogenization techniques as well as similarities between various heterogeneous
material systems when referred to as random or imperfect.
Keywords: random and imperfect composites, textiles, masonry, periodic unit cell,
two-point probability function.
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1 Introduction

Techniques of numerical first-order homogenization have acquired a considerable
attention particularly in applications where detailed numerical analysis of com-
plex heterogeneous material systems proved to be prohibitively expensive. Natural
assumption of the existence of periodic microstructure, e.g., periodic distribution
of fibers in the metal matrix or ceramic matrix composites [1], often serve as the
point of departure. The resulting homogenized or effective material parameters are
then used in large scale structural analysis. Unfortunately, in the vast majority of
real material systems the assumption of periodicity generally fails owing to the
presence of various types of geometrical imperfections usually developed during
fabrication. Giving up the benefit of periodic fields in such cases seems, therefore,
reasonable but definitely not very practical. Instead, the recently introduced con-
cept of statistically equivalent periodic unit cell (SEPUC) [2, 3, 4], appears as a
suitable method of attack.

The leading idea of this approach is to replace a complex non-periodic micro-
structure by a certain periodic unit cell (PUC), which still optimally resembles the
original microstructure in a proper sense. Here, this objective is formalized as a
difference between appropriate statistical descriptors related to the original media
and the periodic unit cell, respectively. If the original microstructure and the peri-
odic unit cell is described by an identical set of parameters, this problem coin-
cides with reconstruction of random materials. If the periodic unit cell is described
by a substantially smaller number of parameters in order to reduce the problem
complexity, it leads to a problem of the best approximation within the selected
statistical descriptors.

It will be shown in subsequent paragraphs that the proposed technique is appli-
cable not only to more or less classical types of composites represented here by
textiles, but also to more conventional class of material systems such as historical
masonry structures.

The principle idea is evident from Figs. 1-3 showing images of real material
or structural systems with corresponding simplified representative volume ele-
ments (RVE) presented in terms of certain statistically equivalent periodic unit
cells. When referring to textiles, Figs. 1 and 2, the crucial sources of imperfections
are attributed to generally random arrangement of fibers within the bundle cross-
section (microlevel) and the waviness, misalignment and/or non-uniform cross-
sectional aspect ratio of individual bundles in the longitudinal direction (meso-
level). Qualitatively similar types of imperfections associated with irregular
arrangement of stone blocks, both in terms of block sizes and their location,
together with a variable thickness of the mortar phase are often encountered when
dealing with historical masonry structures. A typical example is plotted in Fig. 3(a)
showing a parapet wall of the Charles Bridge in Prague.

The stepping stone in the analysis of all systems is the possibility to replace
the original color images, Figs. 1(a)-3(a), by their binary counterparts, Figs. 1(b)-
3(b). The latter representatives of the true micro or meso-structures are further
exploited in the next section when deriving various statistical descriptors. Match-
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Figure 1: a) Micrograph of random fibrous composite, b) Binary image, c) 5-fiber
and 10-fiber SEPUC.

Figure 2: a) Plane view of textile composite, b) Binary image of transverse section,
c) Mesoscopic SEPUC.

ing the material statistics of the real microstructure with those corresponding to
simplified periodic unit cell in the framework of a certain optimization problem
then allows for deriving the desired geometrical parameters needed in the construc-
tion of individual SEPUCs. Knowing the periodic unit cell then opens the way for
the derivation of effective elastic properties using the well known elements of first
order homogenization procedure briefly outlined in Section 3.
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Figure 3: a) Parapet wall, b) Binary image, c) Mesoscopic SEPUC.

2 Definition of a periodic unit cell

The crucial step in the definition of optimal periodic unit cell relies on the choice of
proper description of heterogeneous materials with random or imperfect structure.
In the present work, we restrict our attention to two specific descriptors: one- and
two-point probability functions Sr and Srs; see, e.g., [5] for more details.

To that end, consider a binary heterogenous material formed by phases r and s
and denote the characteristic function of the domain occupied by the r-th phase χr.
(When referring to textiles the symbols r and s may represent the fiber (fiber tow)
and matrix phases, while for masonry the two symbols are essentially reserved for
brick (stone) and mortar phases.) Then, the one-point probability function gives
the probability that a point x will be found in a given phase r and the two-point
probability function Srs stands for the probability that the points x and y will be
located simultaneously in phases r and s, respectively:

Sr(x) = P (χr(x) = 1),Srs(x,y) = P (χr(x)χs(y) = 1). (1)

For the case of statistically homogeneous and ergodic media, information con-
tained in the one-point probability function reduces to the volume fraction of
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a given phase (Sr = cr). In addition, the two-point probability function then
depends on (x − y) only and can be obtained from the relation

|Ω|Srs = F−1
(
χ̃r · χ̃s

)
, (2)

where |Ω| is the area of the analyzed domain, ·̃ and F−1 (·) stand for the direct and
inverse Fourier transform and · denotes the complex conjugate. For discretized
microstructures, Eq. (2) can be rapidly evaluated by the fast Fourier transform
even for high-resolution bitmaps. In the present study, the bitmaps of Figs. 1(b)-
3(b) were employed.

Once the original structure has been characterized by an appropriate statistical
descriptor, we can proceed with the definition of the idealized unit cell. A particu-
lar parameterization considered in this work appears in Figs. 1(c)-3(c). In case of
masonry structures (for textile composites we refer the interested reader to [2, 4],
Fig. 3(c), the unit cell is fully determined once the width of the unit cell, heights
of each layer of bricks and thicknesses of individual joints are specified. In partic-
ular, the geometry of the chosen unit cell is determined by twelve parameters. The
statistically optimal values of these parameters then follow from minimization of
the least square error

E =
∑

i

∑
j

(
S0

rs(i, j) − Srs(i, j)
)2

, (3)

where S0
rs is the two-point probability function related to the original micro-

structure while Srs stands for the two-point probability function of the idealized
unit cell. It can be shown that the objective function E is non-convex, multi-modal
and discontinuous due to the effect of limited bitmap resolution. Based on our
previous works, a stochastic global optimization algorithm based on combination
of real-valued genetic algorithms and the simulated annealing method, see [6],
is employed to solve this optimization problem. This approach was successful in
delivering the desired periodic unit cells for all material systems considered herein.

3 First order homogenization

Consider a heterogenous periodic unit cell Y subjected to a uniform macroscopic
(mesoscopic) strain E. In view of the periodicity of the unit cell, the strain and
displacement fields in the PUC admit the following decomposition

u(x) = E · x + u∗(x), ε(x) = E + ε∗(u∗(x)
)
. (4)

The first term on the right hand side of Eq. (4) corresponds to a displacement field
in an effective homogeneous medium which has the same overall response as the
composite aggregate. The fluctuating Y -periodic displacement u∗ and correspond-
ing strain ε∗ enter Eqs. (4) as a consequence of the presence of heterogeneities;
see, e.g., [7] and references therein. Note that the periodicity of u∗ further implies
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Figure 4: (a) Localized equivalent strain, (b) Mesoscopic response for 5-fiber and
10-fiber PUCs.

that the average of ε∗ in the unit cell vanishes. The local stress fields σ in the PUC
are constrained by constitutive equations and equilibrium conditions

σ(x) = L(x) : ε(x), div σ(x) = 0, (5)

respectively. Note that symbol L stands for the (position-dependent) fourth-order
symmetric stiffness tensor. Combining Eqs. (5) and (4) allows us to determine the
distribution of fluctuating displacement u∗ within the unit cell as a function of E
and, subsequently, to evaluate the average stress in the PUC as

Σ = 〈σ〉 =
1
|Y |

∫
Y

σ(u∗(E)) dY, in particular, Σ = Lhom : E, (6)

where Lhom is the homogenized stiffness tensor characterizing the equivalent elas-
tic homogeneous medium.

3.1 Mesoscopic response of polymer matrix based fibrous composites

Application of Eq. (6) to the derivation of mesoscopic response of graphite fiber
tow impregnated by the polymer matrix is shown in Fig. 4. In this particular
example an influence of the number of fibers within the PUC on the mesoscopic
response was explored. While the elastic behavior is essentially independent of the
number of fibers assumed for the PUC (note that even the model with hexagonal
arrangement of fibers gives the same elastic response) the nonlinear behavior sug-
gests possible dependency. This may be attributed to significant non-homogeneous
distribution of local fields manifested, e.g., by highly localized zones of equivalent
local strain, Fig. 4(a), when loading this system beyond the elastic limit. It should
be mentioned that in this particular example the response of the matrix phase was
assumed to be well described by the generalized nonlinear viscoelastic Leonov
model [8].
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Figure 5: (a) Experimental setup, (b) Simulations for various material parame-
ters of interface elements, (c) Experimental vs. numerical response, (d)
Mesoscopic response.

3.2 Evaluation of effective fracture energy of masonry

The second example demonstrates the use of homogenization theory to the deriva-
tion of macroscopic fracture energy as a material property needed in the large scale
analysis of historical structures such as bridges, where detailed modeling of indi-
vidual phases (stones and mortar) is essentially impossible. This property is found
as the area under the macroscopic stress-strain curve, Fig. 5(d), multiplied by the
PUC area and divided by the total crack length as suggested in [9]. In analogy
with the smeared crack model assumed for individual phases, see [10] for more
details, it can be shown that for the unit cell, Fig. 3(c), loaded by macroscopically
uniform stress or strain in the direction of one of the coordinate axis, say width h,
(all cracks are then assumed to be perpendicular to the loading direction with the
length approaching the other unit cell dimension h1 + h2 + t1 + t2) the macro-
scopic fracture energy receives the value equal to the area under the macroscopic
stress-strain curve multiplied by the crack width h. In such a particular case the
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two definitions are not only identical, but yet confirm applicability of the homog-
enization theory even for quasi-brittle materials.

To arrive at reliable macroscopic response, however, may prove to be rather
complicated. General assumption of perfect and strong bond between individual
phases is usually not acceptable due to weakening effect of air bubbles in the
stone phase in the vicinity of stone-mortar interface. In our particular case, this
zone was represented by interface elements with the behavior governed by the
Mohr-Coulomb failure criterion. The model parameters such as cohesion and angel
of internal friction were derived by matching numerical simulations, Figs. 5(b)-
(c), with the results derived experimentally, Fig. 5(a). Although more sophisti-
cated techniques based on inverse approach are available in the literature, a sim-
ple trial and error method was exercised here to fit individual parameters of the
assumed constitutive model. In particular, a series of possible solutions displayed
in Fig. 5(b) was derived based on randomly generated values of the cohesion and
angel of internal friction. Material parameters corresponding to the “best” solu-
tion, see Fig. 5(c), were then applied in the unit cell analysis to derive the required
macroscopic response to a sufficient degree of accuracy.

4 Conclusion

A rather general approach to the analysis of heterogeneous materials with either
random or imperfect microstructures was reviewed. The basic scheme assumes
formulation of a certain periodic unit cell statistically equivalent (up to two-point
probability function) to real material systems. It is expected that the periodic unit
cell being statistically similar (from the geometrical point of view) to real systems
will also provide similar (at best the same) mechanical response. The robustness of
this approach has been demonstrated through applications to rather different mate-
rial systems varying from plane weave textiles over to natural stone masonry. A
special attention was further devoted to the derivation of effective fracture energy
of masonry systems to support applicability of homogenization techniques also to
quasi-brittle materials.
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