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Abstract 

Within the framework of sustainable development we strive for structures with a 
minimum volume of material. When we only consider criteria on resistance and 
buckling, Samyn and Latteur prove that even at the stage of conceptual design a 
clear hierarchy among the different truss typologies can be established. Up to 
now, stiffness constraints - such as the upper limit on static displacements - were 
not considered. However, an optimum obtained by minimising the volume, only 
considering the strength criterion, often results in solutions which violate the 
stiffness constraint(s). To avoid large displacements a stress level reduction can 
be imposed. However, this comes at the cost of a significant volume increase. 
With an optimisation process that involves the stiffness constraints at the stage of 
conceptual design, an optimum can be obtained without the necessity to alter the 
structure drastically afterwards, which partly annihilates the main objective of 
minimal use of material. This approach compares the different truss types on a 
new priority scale, generating new optima. This implicates a non-negligible 
change in the truss choice at conceptual design stage. The solutions are logically 
depended on the displacement criterions. This approach forms a first step to a 
new design philosophy that considers all the stiffness constraints (static 
displacements, resonance, local and global buckling) at conceptual design stage 
and is called design for stiffness.  
Keywords:  morphological indicators, stiffness, strength, truss, steel, static 
displacements, optimisation. 
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1 Introduction  

1.1 Morphological indicators 

Morphological Indicators (MI) are design tools allowing the optimisation of 
structures for a chosen criterion (volume, stiffness) at the stage of conceptual 
design using a limited number of parameters [1]. The indicator of volume 
W V FLσ=  allows the comparison of the volume of material used of different 
structural systems. It is the volume of an isomorphic structure with unit span L, 
with at least one section dimensioned on its unit allowable stress σ , subjected to 
a system of loads with unit resultant F. The displacement indicator E Lδ σ∆ =  
compares the displacement of different structural systems. It is the maximum 
displacement of an isomorphic structure with unit span L in a material with unit 
Young’s modulus E, with at least one section dimensioned on its unit allowable 
stress σ , subjected to a system loads with unit resultant F. 
     The analytical expressions of both W and ∆ have been established by 
Samyn [1] and Latteur [2] for trusses, beams, arches, cables, cable stayed 
structures, masts and frames subjected to a limited number of (simple) load cases 
and supports. 
     For statically determined structures those MI are only function of the 
geometrical slenderness L/H if instabilities, self weight and second order effects 
are neglected. Efficiency curves depicting the geometrical slenderness with 
respect to minimum volume material can be established (Figure 1). 
     The indicator of buckling L qEFµσΨ =  is developed by Latteur [2] to 
take into account buckling in compression elements. It is the image of the 
buckling tendency of the compression elements in a structure with span L, 
composed of bars with a form factor 2q I= Ω  (with I the moment of inertia and 
Ω  the section area) in a material with Young’s modulus E, with at least one 
section dimensioned on its allowable stress σ  with a system of load with total 
resultant F. µ  is the proportion of the buckling length of the compression bars 
over their geometrical length (which depends on the connection type). 

1.2 Stiffness constraints 

Up to now, stiffness constraints have never been considered in the use of MI. 
Only the resistance criterion was met with volume as the objective function. This 
strategy is called design for strength and often results in lightweight structures 
with a problematic lack of stiffness, which implicates a non-negligible volume 
increase to meet the (imposed) stiffness criteria. In this paper we only consider 
one stiffness constraint: the upper limit on the static displacement. We develop 
an optimisation process that involves this stiffness constraint at the stage of 
conceptual design and obtain an optimum without the necessity to change the 
structure drastically afterwards.  
     Taking stiffness into account compares the different truss types on a new 
priority scale, generating new optima. This implicates a non-negligible change in 
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the truss choice at conceptual design stage. As expected, we show that the 
solutions are dependent on the displacement criteria. 
 

 

Figure 1: Indicator of volume as a function of the slenderness for some 
classical structure typologies, neglecting buckling, Samyn [1]. 

 

2 Upper limit on static displacements 

In Eurocode 3 [4] we can find the normative constraint on static displacements. 
This is usually expressed as an upper limit on Lδ . δ  is the maximum total 
displacement of the structure and L the span of the structure. Those are only 
indicative values; the commissioner of the project can impose sterner limits.  
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     There are 2 types of constraints: those on the displacements due to the total 
loads and those on the displacements due to the live loads only. The 
determinative criterion depends on the ratio of live loads to the total loads (self 
weight included).  We can demonstrate that when this percentage is smaller than 
74% we must consider the constraints on the static displacements due to the total 
loads. Since this is almost always the case, from now on we only consider the 
displacement constraints due to the total loads.   
     Considering the nature of the displacement constraints, those can very easily 
be translated to an upper limit on the displacement indicator, ∆. Imposing an 
upper value on Lδ  results in imposing an upper value on ∆. However the 
constraint on ∆ becomes material dependant.  The larger the proportion of 
Young’s modulus over the allowable stress, the larger the allowable value of ∆ 
and the less severe the constraint. Table 1 shows the basic material properties of 
the classic structure steels.  

Table 1:  Material properties of (common types of) structure steel. 

 
Name 

Specific 
weight ρ  

(N/m³) 

Young’s 
modulus E  

(GPa) 

Allowable 
strength σ  

(MPa) 

 

σE  

 

ρσ  (m) 

S235 78500 210 235 894.6 2993.6 
S275 78500 210 275 763.6 3503.2 
S355 78500 210 355 591.5 4522.3 

 
     Finally it is important to mention that, according to the Eurocodes, a 
calculation of static displacements is a Serviceability Limit State (SLS) 
calculation as opposed to a strength calculation which is an Ultimate Limit State 
(ULS) one. The difference between, SLS and ULS resides in the partial safety 
coefficient imposed on the loads: in ULS we typically use 1.5 for live loads and 
1.35 for permanent loads, in SLS, on the other hand 1.0 for both load types.  At 
conceptual design stage, we can accurately transform loads in ULS to SLS by 
dividing the total loads in ULS by 1.4 to obtain the total loads in SLS. Since the 
static displacements are linearly proportional to the loads, we must divide the 
displacement indicator calculated in Samyn [1] and Latteur [2] by 1.4. 

3 Indicator of volume of structures subjected to stiffness 
constraint 

3.1 Strategy 

We violate the displacement constraint for a large interval of the slenderness and 
for common typologies of trusses. Figure 2 depicts the indicator of displacement 
∆ for Warren trusses with minimal W. We observe that for common values of 

Lδ (1 200  and 1 500 ) an upper value for ∆ exists which we cannot exceed. 
This value of ∆ determines a validity interval for the slenderness. 
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Figure 2: Displacement indicator of the lightest Warren trusses and common, 
displacement constraints for S355 steel. 

     The designer is presented with different solutions:  
• Change the slenderness. This often results in a smaller slenderness. 

However, in most cases a maximal height is imposed which results in a 
minimum slenderness 

• Change the typology (number of meshes and/or truss type). This solution is 
also subjected to technological and architectural limitations.   

• Introduce an initial camber: this can compensate the displacement caused by 
the permanent loads.  

• Reduce the stress level: by doing so we increase the stiffness of the 
structure. However this comes at the cost of an increase in volume of 
material. 

The scope of these solutions and their respective impact on the increase of 
volume of material must be considered at conceptual design stage.  A possible 
approach is the calculation of W and ∆  for every structure. Then we must 
compare the calculated indicator of displacement to its imposed upper limit.  
When the calculated displacement is allowable we use this structure.  If, on the 
other the hand we violate the constraint we impose a stress reduction to increase 
the stiffness and meet the criterion on static displacements. We use β to denote 
the necessary stress reduction and define β as the ratio of the applied stress level 
to the maximum allowable stress level. 
     Finally we determine the indicator of volume for this reduced stress level.  
This leads to a relatively accurate prediction of the volume of the lightest 
structure considering the strength requirement and the constraints on static 
displacements. The ‘new’ optimum curves depend on these stiffness constraints 
and therefore on Lδ and the material of the structure. The number of parameters 
increases from 2 ( Ψ  and L H ) to 4 ( Ψ , L H , Lδ and material). The main 
disadvantage is that we cannot draw general design curves valid for all structures 

       Ψ = 10 

     Ψ = 30 
     Ψ = 20 

            = region of classic upper limits on   ∆, corresponding
to relative displacements between 1/500 en 1/200  

 ∆ 

L/H 
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as those set up in Samyn [1] and Latteur [2]. Nevertheless, the number of 
parameters remains small being the main advantage of the MI.  
 

 

Figure 3: Optimum indicator of volume and corresponding slenderness as a 
function of the indicator of buckling for Warren truss loaded on 
their lower chord [2]. 

3.2 Results 

In [2] Latteur selects the optimal (i.e. the lowest) indicator of volume W and its 
corresponding slenderness optL H  for every value of the indicator of buckling 

Ψ . We plot W and L H  as a function of Ψ  (Figure 3).  This allows us to 
determine the optimal value of W and L H  if Ψ  is known. However, the main 
disadvantage is the absence of sensitivity!  Those curves only show the optimal 
values. For another value of the slenderness, no information is available. 
Considering that most optima are found for slendernesses between 2 and 12 [2] 
and that usually trusses have values of the slenderness between 8 and 18 [3], 
working at the optimum values is not always possible. Therefore we clearly 
divide the input information in variables and parameters. The material 
parameters and the displacement constraint are considered as being input 
parameters, since their values are fixed. For this set of parameters, we plot 
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efficiency curves for the indicator of volume as function of the slenderness for 
0,10,20,30.Ψ =  0Ψ =  corresponds to the theoretical value of Samyn [1], in 

which buckling is neglected. Common values of Ψ  vary between 10 and 30. 
Between the curves of 10,20Ψ =  and 30  linear interpolation is allowed, 
certainly at conceptual design stage. 

 

Figure 4: Design curves of Warren truss of S355 steel loaded on their lower 
chord, with (bold) and without the upper limit on static 
displacement of 1 300 . 
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     We also provide the optimal stress level reduction as a function of the 
slenderness for the same values of Ψ , illustrating the impact of the stiffness 
constraint on the ‘exhaustion level’ of the elements. 
     To limit the amount of curves those calculations are repeated for values of the 
slenderness between 0 and 20 and n (number of meshes) between 2 to 18.  Only 
the trusses with optimal (minimum W) number of meshes optn , are selected. 
Finally, for every slenderness, the corresponding optn  is plotted, representing the 
optimal truss.  
     This yields 3 design graphs for each set of input parameters (Figure 4, bold 
curves). The noise is the result of numerical calculations. A corresponding trend 
line indicates clearly the tendency.   
 

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20  

Figure 5: Impact of design for stiffness versus design for strength on 
optimisation of volume. 

4 Practical example 

We design a 355S  steel Warren truss with a span of 50m and a maximal height 
of 4m. We must limit the maximal static displacement to 1 300 . If we only 
consider the resistance criterion [1] the slenderness and the mesh number are the 
only variables and we obtain a truss with a slenderness of 12,5 and 2 meshes 
when we limit the volume of material. In the strategy of Latteur [2], in which 
buckling is considered explicitly, more input information is needed to determine 
the value of Ψ : the selected material, the section type of the bars and the total 
load. S355 steel, tubes with thickness/diameter ratio of 0.04 and a total load of 
2500kN , result in an indicator of buckling of 22.62.Ψ = We obtain an optimum 
truss with 11 panels and a slenderness of 12,5. Finally, the constraint on the 
static displacement does not influence the slenderness, on the other hand the 
number of panels decreases to 5. For this truss we obtain 3.75.W =  Since we 
include more phenomena (buckling, static constraints), the indicator of volume 
obtained by Samyn [1] increases (from 2.42 to 5.46). The solution obtained by 

  W 

L/H Ψ = 0

   Ψ = 20   Ψ = 30

  2,42 

  5,46 

  4,04 

  3,16 
  3,75 

            without constraint on displacement 
            with constraint on displacement 
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Latteur [2] also increases due to the constraint on the static displacement (from 
3.16 to 4.04). Those results are shown in Figure 5 and clearly illustrate the 
importance of considering stiffness constraints at conceptual design stage. Here 
we obtain a gain in volume of 8% in comparison with Latteur [2] and up to 46% 
with the result of Samyn [1]. 

5 Conclusions 

We found that trusses with a large stiffness are composed of a small number of 
panels. Even though a larger number of panels reduces the buckling length of 
compression members, we observe that when we consider the constraint on static 
displacements we obtain an optimal solution with a smaller number of panels [1].   
     Moreover, stiff trusses are usually stocky (typically L H  between 1.5 and 5), 
which confirms the results obtained by Samyn [1], guiding us towards small 
slendernesses. We observe that these stiff trusses are often very light (especially 
when the truss is not sensitive to buckling). 
     The more buckling sensitive the truss, the smaller the necessary stress level 
reduction, since the material against buckling also provides stiffness against 
displacements.  This can be noticed on the curves by the larger β’s at larger 

s'Ψ for the same slenderness. On the other hand, a stress level reduction against 
displacements means a less buckling sensitive truss.  This explains why at larger 
slendernesses (the most compliant geometry), the curves of the different Ψ’s 
join. For very large L/H’s and/or very strict displacements constraints, we can 
assume that the optimal structures become independent of Ψ. 
     The optimal stress level is not always 1β = . This clearly shows that fully 
stressed design doesn’t always give the lightest structure. 
     Finally, Howe and Pratt trusses do not present any advantage in comparison 
with Warren trusses, since they not only need more material but are less stiff. 

6 Further research 

The above mentioned strategy, which considers the constraints on static 
displacements, can be applied to other truss topologies (K, Long, Smith,…) and 
to different typologies (arches, beams…). Hence, we can consider a new design 
hierarchy with respect to the minimisation of volume   
     This approach constitutes a first step to a design philosophy that considers all 
stiffness constraints (static displacements, resonance, local and global buckling) 
at conceptual design stage, called design for stiffness.  
     Finally, we must consider the influence of the connections (fixed or pinned) 
on the stiffness and on the volume of material. 
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