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Abstract 

The Theory of Morphological Indicators allows a preliminary optimisation of 
structures at the stage of conceptual design. Samyn and Latteur developed the 
Indicator of Volume to determine the efficiency of structures at early design 
stages. The main advantage of this approach is that we only need a very limited 
number of parameters. Samyn establishes efficiency curves, with respect to 
minimum volume of material, for trusses in which he neglects buckling. Latteur 
establishes efficiency curves in which he accounts for buckling. The 
displacements are usually checked afterwards to verify if the normative 
constraints are not exceeded. In this paper we argue that for trusses, loaded 
dynamically and with large spans, dynamics become the dimensioning criterion. 
We use the Indicator of the First Natural Frequency to determine the first natural 
frequency of trusses. We find that for fully stressed trusses this natural frequency 
is usually near to the excitation frequencies of man induced and wind induced 
vibrations. Therefore, we need to include dynamics in the optimisation 
procedure. We show that for trusses with important spans very large stress 
reductions are necessary to obtain acceptable natural frequencies. This stress 
reduction comes at the cost of a very important and unacceptable increase of the 
volume of material. We determine which typology (Warren, Howe, Pratt) is the 
most efficient (minimal volume) with respect to dynamics. Moreover we show 
that when dynamics is the dimensioning criterion, the influence of buckling on 
the optimum design is negligible since an important stress reduction is necessary. 
Finally we propose a work scheme that allows considering dynamics in the 
Theory of Morphological Indicators and we provide an example.  
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1 Introduction to the theory of morphological indicators 

Morphological Indicators are design tools allowing the optimisation of structures 
for a chosen criterion (volume, stiffness) at the stage of conceptual design using 
a limited number of parameters [1]. The Indicator of Volume FLVW σ=  
allows the comparison of the volume of material used of different structural 
systems subjected to the same load case. The Displacement Indicator 

LE σδ=∆  compares the displacement of different structural systems for a 
given stress level. 
     Samyn [1] and Latteur [2] established the analytical expressions of both W  
and ∆  for trusses, beams, arches, cables, cable stayed structures, masts and 
frames subjected to a limited number of (simple) load cases and support 
conditions. 
For statically determined structures these Morphological Indicators are only 
function of the geometrical slenderness HL  if instabilities, self weight and 
second order effect are neglected. Latteur [2] introduced the Indicator of 
Buckling qEFLµσ=Ψ  to take into account the additional volume of 

material due to buckling. Ψ  is a ‘global’ measure of the sensitivity of a 
structure to buckling as a function of the material used. Herein, µ  is a reduction 
factor that determines the effective buckling length of the compression member, 

2Ω= Iq  is a form factor (with I  the moment of inertia and Ω  the section 
area) that determines the disposition of the material with respect to the center of 
gravity of the compression member (buckling efficient sections have large value 
of q ). 
     Furthermore Samyn [1] and Latteur [2] introduced the Indicator of Self 
Weight σρL=Φ  to take into account the influence of self weight on the total 
volume of material. Herein, ρ  is the specific weight of the material used. 
In [3, 4] the authors show that dynamics can become the dimensioning criterion 
for structures with large spans and/or small stiffness/strength ratio. Therefore, an 
Indicator of the First Natural Frequency ∆=Θ 1  is introduced [1, 3, 4]. 

2 Indicator of the First Natural Frequency 

2.1 Classification of loads 

For a structure spanning a length L , the total resultant of the loads F  consists 
of: 

• The external live loads lF  
• The external permanent loads pF  

• The self weight 0F  
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The external live loads are subdivided in non co-vibrating live loads ll cFF =1  
and co-vibrating live loads ( ) ll FcF −= 12 , with c  the share of the non co-
vibrating live loads in the total live loads. 
     Furthermore, we define the following combinations: 
 

• pP FFF += 0 , the sum of all permanent loads 

• lpE FFF += , the sum of all external loads 
 

     We can now express the resultant of all loads as follows: 
 

lPE FFFFF +=+= 0                                                        (1) 
 

When calculating the first natural frequency of a structure, we take into account 
the co-vibrating loads as vibrating mass. We express the total co-vibrating load 

DF  as follows: 
 

( ) lPlpD FcFFFFF −+=++= 120                                      (2) 
 

 
 
These loads refer to the Ultimate Limit State (ULS) calculation of the structure. 
For a dynamic analysis, we must consider loads in a Serviceability Limit State 
(SLS). Hence, we can express DF  in SLS 

( )
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F −+=               (3) 

And we express the vibrating mass *
Dm  of a structure as: 
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D

*
* =                 (4) 
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Finally, we express the total mass m  of a structure as: 

g
Fm =                (5) 

2.2 The first natural frequency of a SDOF system 

By approximating the structure by an undamped single degree of freedom 
(SDOF) structure, with *

Dm  the vibrating mass in SLS of the structure and k  the 
static stiffness of the structure, the first natural frequency can be expressed as: 

*1 2 D

cor

m
kc

f
π

=                (6) 

By reducing a continuous system to a SDOF system, some approximations are 
made. corc  is a correction factor that counters these approximations. For beams, 
it can be determined analytically; for trusses on the other hand, it must be 
determined numerically. 
     We can express the vibrating mass as a share of the total mass, with *z  the 
ratio of the co-vibrating load *

DF  in SLS and the total load F  in ULS: 
 

mzmD
** =                        (7) 

 

By substituting eqns (7) and (5) in eqn (6), the expression of the first natural 
frequency becomes: 

Fz
gkc

f cor
*1 2π

=                       (8) 

With kF=δ  the static displacement, eqn (8) becomes: 

δπ *1 2 z
gc

f cor=              (9) 

or as a function of the Displacement Indicator: 

Lz
gEc

f cor

∆
=

βσπ *1 2
            (10) 

The parameter β  indicates the stress level of the structure.  
     The Indicator of the First Natural Frequency becomes: 

gE
Lz

c
f

cor

βσπ *
121

=
∆

=Θ             (11) 

When we calculate the natural frequency we need a larger number of parameters 
• the span ( L ) 
• the material (σ , E ) 
• the stress level ( β ) 

• the ratio of co-vibrating load in SLS and total load in ULS ( *z ). 
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2.3 Determination of the correction factor corc  

An approximate method to calculate the first natural frequency of a structure, 
yielding very good results, is Rayleigh’s energy method [5]. By using this 
method we derive the first natural frequency by equating the maximum potential 
energy to the maximum kinetic energy. For a structure with concentrated loads 
the fundamental frequency becomes, with jδ  the static displacement under the 

concentrated load jF  : 

∑
∑

=

j
jj

j
jj

F

F

gf
22

1
δ

δ

π

            (12) 
We checked the results of this method numerically with Robobat. The results 
obtained using eqn. (12) underestimate the numerical ones marginally 
(maximum 10% for small slendernesses). 
          

2.4 Indicator of First Natural Frequency 

We can use the Indicator of the First Natural Frequency to determine the first 
natural frequency of structures. 
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Figure 1: Graph allowing the determination of the first natural frequency of 
Warren truss with 10 panels. 
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     In the first quadrant we plot the Indicator of the First Natural Frequency as a 
function of the overall slenderness. In the second quadrant we plot L∆1  as a 

function of ∆=Θ 1 . Finally in the third quadrant we plot the frequency 

abscissa for different material, stress level and value of *z . Since we include the 
material, stress level and value of *z  in the frequency abscissa the first and 
second quadrant must never be changed for this structure. 
In this example we determine the first natural frequency of a steel Warren truss 
with 10 panels and a span of 50m in which we can neglect buckling ( )0=Ψ . For 
this example we obtain a first natural frequency of 1,7Hz. 

3 Trusses dynamically loaded 

3.1 Scope 

We can now study the behavior of trusses that are subjected to dynamic loads. 
We consider three truss typologies (Warren, Pratt and Howe): 
 

  
Warren Pratt 

 
Howe 

 
     We consider three truss typologies (Warren, Pratt and Howe) with: 

• Three different spans (L = 20m - 50m - 70m) 
• Three number of panels (n = 4 - 8 - 12) 
• Three values of z* (z* = 0,15 - 0,44 - 0,74) 
• Two different materials (timber - steel). 

 
     Moreover, we impose that the natural frequency of the structure must be 
larger than 5Hz because the man and wind induced frequencies are usually 
between 0Hz and 5Hz.  
     For trusses in which we neglect buckling we can express the constraint on the 
first natural frequency as a constraint on geometrical slenderness. First, we use 
eqn. (10) compute an upper bound on ∆ : 

⇒− Hz50 max

2

*52
∆=∆=








×
<∆ dyn

cor

Lz
gEc
βσπ

         (13) 

 
     In [1] we find the expression of the Indicator of Volume of Warren trusses 
(eqn. (14)) and Howe/Pratt (eqn. (15)) trusses: 
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On the other hand, if we consider buckling through Ψ  this interval is calculated 
numerically. 

3.2 Results and comparison 

When we select a target slenderness of L/H = 10, the large majority of 
combinations (typology, L, n, z*, material) need a large stress reduction to obtain 
a first natural frequency larger than 5Hz. This stress reduction increases when we 
use: 

• Pratt or Howe truss instead of Warren truss 
• A large span 
• A large number of panels 
• A large value of z* 

Table 1:  Howe-Pratt ( 0=Ψ ): Necessary stress reduction for target 
slenderness L/H = 8 for different materials, spans, number of panels 
and z*. 

0=Ψ  Hzf 5>  8=HL  

  

co-vibrating load z* = 0, 74 z* = 0, 44 z* = 0, 15 

Material timber steel Timber steel timber steel 

Number of panels 4 4 4 

L = 20m β = βσ 0,18 0,20 0,30 0,34 0,88 1,00 
L = 50m β = βσ 0,07 0,08 0,12 0,13 0,35 1,00 
L = 70m β = βσ 0,05 0,05 0,08 0,09 0,25 0,29 

Number of panels 8 8 8 

L = 20m β = βσ 0,18 0,20 0,30 0,34 0,88 1,00 
L = 50m β = βσ 0,07 0,08 0,12 0,13 0,35 1,00 
L = 70m β = βσ 0,05 0,05 0,08 0,09 0,25 0,29 

Number of panels 12 12 12 

L = 20m β = βσ 0,16 0,18 0,27 0,31 0,81 0,93 
L = 50m β = βσ 0,06 0,07 0,11 0,12 0,32 0,37 
L = 70m β = βσ 0,04 0,05 0,07 0,09 0,23 0,26 

High Performance Structures and Materials III  19

 © 2006 WIT PressWIT Transactions on The Built Environment, Vol 85,
 www.witpress.com, ISSN 1743-3509 (on-line) 



The stiffness/strength ratio of steel and timber is comparable. Table 1 gives an 
indication of β , the necessary stress reduction to obtain Hzf 51 >  for a 
Howe/Pratt truss. 

4 Conclusions and further research 

4.1 Conclusions 

In this paper, we showed that we can include dynamics into the Theory of 
Morphological Indicators. This comes at the cost of a larger number of 
parameters to consider. However, we believe that in order to be useful we must 
include the dynamic behaviour of (lightweight) structures. Moreover, we argue 
that the number of parameters to consider are still small and are all available at 
the stage of conceptual design. 
     We developed the Indicator of the First Natural Frequency, Θ , to compute 
the first natural frequency of structures. The expression of Θ  clearly shows that 
the problem is not scale independent anymore. 
     We found that trusses with large spans, large values of z* and small 
stiffness/strength ratio are sensitive to dynamic loads and need important stress 
reduction to obtain an acceptable natural frequency. 

4.2 Further research 

In order to make the Theory of Morphological Indicators more powerful in terms 
of dynamic behaviour, the following topics can be worked out in the future: 

• Stress reduction due to fatigue 
• Higher natural modes and frequencies 
• External damping devices (passif, actif, hybrid) 
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