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Abstract 

Practices that restore degraded agricultural soils are important for improving 
overall environmental quality. In order to implement best practices that maintain 
agricultural productivity and in the process restore soils and environmental 
quality, there needs to be better understanding of how soil management affects 
soil factors associated with and leading to soil degradation and desertification. 
This study presents new information about how agricultural land management 
changes affect soil restoration and SOC levels for cereal-growing regions of 
central Spain. The results show extensification of agricultural practices using 
long term pasture rotations (e.g. 5-year) may improve soil degradation via the 
restoration of SOC levels.  
Keywords: soil restoration, crop rotation, soil organic carbon, semi-arid, 
Mediterranean, carbon sequestration. 

1 Introduction 

Cropland agriculture comprises a significant percentage of the world’s arid and 
semi-arid regions. In these areas, the precipitation limitations, climate variability 
and anthropogenic factors can lead to soils being vulnerable to degradation and 
desertification. Soil degradation can be defined as the loss of productivity or 
utility resulting from natural or anthropogenic factors (Lal [16]; Lal et al. [20]) 
and generally results from a set of interconnected processes, each often 
categorized as being mainly a physical, chemical or biological soil process. The 
factors that affect the level of degradation in semi-arid cereal-cultivated central 
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Spain, and other similar regions, include variations among soil properties, 
climate, topography and type and management of vegetation cover. Loss of soil 
structure, leading to crusting and erosion; reduced total exchange capacity 
(TEC), an important factor in soil fertility; and a reduction in the total carbon 
within the soil are common processes of degradation in semi-arid soils (Lal 
et al. [20]; Manlay et al. [23]). In central Spain, the cause of soil degradation has 
been related to agricultural land management (De Alba-Alonso [5]), and in a 
broader regional context, the agricultural policy and subsidy drivers behind 
management choices (Boellstorff and Benito [2]). 
     The level and type of soil degradation may vary significantly between land 
practice factors, and thus be potentially deterred by new policy that can mandate 
management changes. An added benefit in restoring degraded soil carbon levels 
is the possible role agricultural land managers may have in new carbon 
sequestration programs and policy (Olsson and Ardö [26]; Lal [19]). Estimates 
show restoration of degraded SOC levels worldwide can have a significant 
contribution in minimizing rates increase of atmospheric carbon dioxide levels in 
the next 2-5 decades (Lal [17, 18]). Currently operating carbon credit exchange 
programs exist in Canada and Australia, however the uncertainty presented by 
SOC measurement have not been acceptable for some policy-makers to 
implement programs in Europe (Macey [22]). Uncertainty in measurement of 
SOC is a significant concern for understanding the role of land management 
change in agricultural regions, which show a higher level of variation in 
estimations among all major land use types (Janssens et al. [13]; Smith [29]). 
However, even though there isn’t widespread agreement on if carbon credit 
exchange programs should be used in the agricultural sector, improved 
agroenvironmental benefits brought about by restoration of SOC should be taken 
into consideration (Sauerbeck [28]; Lal [18]).  
     This applied study presents a methodology to determine the land management 
effect on soil degradation and restoration in semi-arid central Spain. The first 
part of the study uses direct observations of current soil properties under typical 
land management in the region to determine variation among them. The second 
part of the study uses these values to estimate soil restoration under different 
land management types. The results can be extrapolated to other areas with 
similar climate, physical and anthropogenic factors. The goal of the study is to 
determine if soil degradative factors vary significantly by physiographic position 
or land management. The second goal is to estimate soil restoration potential of 
different land management scenarios and suggest best management practices 
(BMPs) that also account for agricultural productivity.  

2 Materials and methods 

2.1 Study area  

The Experimental Farm Station La Higueruela (40º3′N, 4º26′W), which was 
established in 1973 by the Spanish Center for Environmental Research, is 
located in the Alberche River watershed in the north central part of the Toledo 
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province (Figure 1). The Station is situated within the Arroyo Grande catchment 
(43 km2), a sub-tributary to the Alberche River, part of the larger Tagus River 
system. The climate averages 450 mm annually with cool, wet winters and hot, 
dry summers. Soils in the region are derived from arcosic sandstone and detritic 
carbonate deposits, and are characterized by sandy clay loam texture with overall 
low organic matter content, which is concentrated in the upper part of the A 
horizon (10 cm). The rolling topography ranges in elevations from 130 to 530 m. 
Seventy percent of the land area has slopes between four and ten per cent. 
     Soil erosion results from the combined effects of cultivation and high 
intensity storms. Cereal crops typically follow a winter rotation and are 
alternated with cycles of unseeded fallow and legumes (Vicia sativa L.) to 
augment soil moisture and nitrogen. Mouldboard ploughing, generally applied 
both post-harvest and during unseeded fallow periods, is used for weed control 
and breaking soil crust to improve water infiltration (De Alba-Alonso [4]; 
Boellstorff and Benito [2]).  Mouldboard ploughing results in displacement of 
the cultivated layer (Fitzjohn et al. [7]; Van Oost et al. [30]). Tillage erosion and 
displacement due to water erosion have a net effect of lateral variation in soil 
properties. This variation is visible on the landscape as whitish areas on steep 
convex shoulder slopes, where topsoil has been removed and lighter subsoils 
exposed, and as dark areas on gentler sloping or concave positions, where topsoil 
is thicker or has accumulated by erosion (Figure 1, part c).  
 

 

Figure 1: (a) and (b) Location of La Higueruela Experimental Station; 
(c) shaded area showing location of field areas sampled. 

2.2 Sample data collection 

To compare SOC and soil properties important in maintaining SOC levels, 
samples from the upper 10 cm of the Ap horizon were collected (June 2006) 

 © 2008 WIT PressWIT Transactions on the Built Environment, Vol 100,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Geo-Environment and Landscape Evolution III  39



from fields managed by the Experimental Station. Sample sites in long-term 
cereal and pasture managed fields are representative of the broader Alberche 
River watershed. Within selected fields, samples were taken along predominant 
landscape positions. Three subsamples within a m2 area were combined for a 
composite sample. A separate core sample was collected for measuring bulk 
density. Samples were air-dried and sieved through a 2mm screen. SOC values 
were measured using the wet oxidation method for measuring oxidisible carbon 
(Walkley and Black [31]) and TEC and mean weight diameter were also 
measured for each sample (Table 1). 

Table 1:  Average soil property values by management type and landscape 
position. 

  SOC TEC MWD 
MANAGEMENT       

Cereal (n=22) 0.59 25.41 38.48 
Pasture (n=10) 0.99 34.26 37.53 

LANDSCAPE POSITION    
Summit (n=11) 0.63 20.62 37.26 
Shoulder/side slope (n=10) 0.64 27.85 37.18 
Toe/foot slope (n=11) 0.65 27.97 37.98 

SOC = Soil organic carbon (%), BD = bulk density in g/cm3, TEC = total exchange 
capacity (ME/100g), MWD = mean weight diameter (µm). Shaded values are factors 
with significant difference. 

2.3 Sample comparisons and SOC prediction 

Sample analyses results were grouped by landscape position and by management 
type.  Values differed significantly for SOC and TEC (p<0.01 and p<0.1 
respectively) by management type, with higher values for pasture-managed than 
cereal-cultivated samples for both SOC and TEC (Table 1). The measure of soil 
aggregate stability (MWD) did not vary significantly between these two 
management types. The differences in the values for these factors were not 
significant when compared by landscape position. 
     Soil carbon cycling utility programs such as Roth-C, Century and 
SOCRATES are useful in determining spatial and temporal estimated rates of 
SOC level change under specific vegetation management, climatic, and soil 
factors scenarios. An advantage of soil carbon modelling is the ability to estimate 
carbon changes for individual SOC compartments, including plant matter, 
microbial biomass and soil humus (Figure 2). SOC pools decompose at different 
rates and thus have varying effects on potential soil restoration and soil carbon 
sequestration. The long-term soil carbon compartment of humus has shown to be 
significant for soil restoration (Drogovoz [6]; Manlay et al. [23]) and because of 
its long residence-time in the soil, CO2 sequestration (Sauerbeck [28]).  
     The Soil Organic Carbon Reserves and Transformations in EcoSystems 
model (SOCRATES) (Grace [9]) estimates changes in the five main SOC 
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compartments.  Comparison between SOCRATES results and observed data 
from 18 long-term trials by Grace et al. [10] resulted in high agreement with 
field data (r2=0.96) for a range of terrestrial ecosystems in Europe, North 
America and Australia. The model also produced more accurate results 
compared with Roth-C when compared with sampled field data from La 
Higueruela long-term cereal trial measurements for this study.   
 

 

Figure 2: SOCRATES model SOC compartments and transfers. Reproduced 
with permission from Grace et al. [11]. 

The modelled carbon input is from plant matter estimated from a net primary 
calculation (Lieth [21]). The input is divided into decomposable and resistant 
plant matter (DPM and RPM) by a set ratio of 0.59 (DPM/RPM) tested for arable 
land (Jenkinson [14]; Grace et al. [11]). The plant matter in each compartment 
decomposes directly into humus and also contributes to the humus compartment 
via microbial biomass compartments. The rates of decomposition are determined 
by the soil properties and were calibrated using C14 incubation data (Amato and 
Ladd [1]; Ladd et al. [15]). These decomposition values are for optimum 
moisture conditions (25ºC) and are 0.84, 0.07, 0.055, 0.0009 weekly for 
decomposable organic matter, resistant organic matter, protected microbial 
biomass, and soil humus respectively. The decomposition rate for unprotected 
microbial biomass (0.95) is calculated on a daily time-step to simulate its rapid 
turnover. The amount of carbon (Y) that decomposes from each compartment 
during a weekly, or daily, time-step follows an exponential decay function: 
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     The function relates initial amount of carbon in a particular compartment, Y0, 
to the factor for temperature (a), soil moisture (b), and the individual 
compartmental decomposition rate (k). 

2.4 Land management SOC-change modelling 

To compare land management effects on potential soil restoration, changes in 
SOC were modelled for typical agricultural land management in the La 
Higueruela region. Three hypothetical alternatives were designed for comparing 
the effects of conversion to permanent pasture, alternative rotations and 
extensification (Freibauer et al. [8]; Smith [29]).  All scenarios were modelled 
for a 25-year period. This length of inventory period is recommended by the 
Intergovernmental Panel on Climate Change as part of the guidelines for national 
greenhouse gas inventories (IPCC [12]). A traditional scenario (T) represents 
typical cereal cultivated rotations of wheat (with residue retained), legume 
pasture, and unseeded fallow. Two hypothetical scenarios represent 
modifications to typical cereal rotation using longer periods of legume pasture, 
for five (P5) or ten years (P10), within five-year blocks of wheat-fallow rotation. 
The continuous pasture scenario (CP) models the potential effects of 
transitioning land to legume pasture for the entire modelled period. 
     The initiating values for monthly temperature and precipitation were monthly 
average values recorded at La Higueruela (1975–2006).  These climate values 
remained constant for the 25-year modelling period. The average of cereal-
cultivated fields in the study region SOC value of 0.59 per cent (Table 1) was 
used as an initiating value for the modelling process.  

3 Results and discussion 

The sample analyses and modelled results reflect typical low SOC values of the 
region, and are in agreement with values developed in similar large-scale 
Spanish national studies (Rodríguez-Murillo [27]; OECC and UCLM [25]).  
However, variation among the modelled results illustrates important impacts that 
land management may have on SOC in this region.  
     The total SOC per cent at the end of the 25 year period was greatest for 
continuous pasture, followed by the 10-year and then 5-year pastured scenarios 
(Figure 3). Traditional land management had the lowest percentage of SOC at 
the end of the modelling period, with only 0.07 T per ha yr-1 average, a total of 
1.7 T ha-1 over the 25-year period. The long-term soil carbon component of soil 
humus shows less increase for pasture scenarios, as compared with total SOC. In 
extrapolating modelled results over the 43 km2 watershed where the Station is 
located, the 5-year pasture rotation management (P5) could result in an estimated 
40 metric tons SOC over traditional management in the next 25 years. According 
to total SOC or soil humus, transitioning cultivated land to pasture would be the 
best management practice (BMP) and could result in an increase of 200 metric 
tons of SOC. Making a broader estimate for the entire province of Toledo 
(1.5 million ha) would require taking into consideration variation in soil, climate 
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and differences in the land management, however if all the variables were 
consistent with the smaller study area, a management transition to pasture could 
result in 12 million tons of over a 25-year time period.  
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Figure 3: Modelled SOC values for the four scenarios. T=traditional, 
CP=continuous pasture, P5=cereal with 5-year pasture cycles, 
P10=cereal with 10-year pasture cycles. 

Table 2:  Modelled SOC and soil humus totals over 25 year period. 

 T CP P5 P10 
Total SOC     

T ha-1 1.66 10.29 3.30 4.70 
T ha-1 y 0.07 0.41 0.13 0.19 

Soil humus     
T ha-1 0.48 3.49 1.59 2.09 
T ha-1 y 0.02 0.14 0.06 0.08 

T=traditional, CP=continuous pasture, P5=cereal with 5-year pasture cycles, 
P10=cereal with 10-year pasture cycles. 

4 Conclusion 

Transitioning cultivated soils to continuous pasture would improve the soil 
quality of this region and could play a role in increased terrestrial carbon storage 
and lowered atmospheric rate increases in agreement with Spain’s 2008–2012 
carbon emissions reduction commitment. This increase in soil carbon may be 
significant for overall reduction of over 100 million metric tons CO2 equivalent 
needed for Spain to meet national greenhouse gas national allocation plan 
commitments for 2008–2012 (CEC [3]; MPR [24]). If these management 
changes were implemented as a part of soil restoration policy or carbon 
emissions reduction policy, there would be a need to address how to maintain 
economic support for farmers normally dependent on production subsidies or 
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income linked with production. Without current emissions trading in the EU, 
payment to farmers from other sectors wanting to offset their emissions wouldn’t 
be an option. The current carbon trading program applied in the U.S. Great 
Plains region uses trade measurements based on a very conservative estimate of 
SOC increase and highlights soil restoration benefits that accompany the 
management changes. The low estimates are used as a means to account for 
uncertainties in SOC monitoring and concerns that errors could ultimately lead to 
increases in CO2 emission levels. However, there the recognition that increased 
SOC can contribute to reductions in atmospheric CO2 rate increases in the short 
term and that conservative estimations over a fixed time period are a main focus 
of the program. It’s possible similar agricultural land management changes in the 
EU and other regions will make their way into emission reduction policy and 
plans in the future through carbon credit exchanges. The soil restoration benefits 
of these management shifts linked with increased SOC and soil humus would be 
an important consideration for improving the sustainability of semi-arid 
agroenvironments. 
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