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Abstract 

Soil erosion control requires a quantitative evaluation of potential soil erosion on 
a specific site. The Revised Universal Soil Loss Equation (RUSLE), Remote 
Sensing (RS), and Geographic Information System (GIS) were used to model 
soil erosion intensity for soil conservation and vegetation rehabilitation in an 
Upper Min River (UMR) watershed, which is in the Upper Yangtze River basin. 
Data used in this study to generate the soil loss were Landsat Enhanced Thematic 
Mapper (ETM) images, Digitized Elevation Model (DEM), soil erodibility, 
rainfall erosivity, and inventory data. The non-parametric k-nearest neighbor (k-
NN) method was used to produce the cover management map by integrating the 
ETM images and vegetation coverage data measured in the 625 sample plots. 
The root mean square errors and significance of biases at pixel level were 
evaluated in order to find optimal parameters. Four raster maps have been 
produced for the soil erodibility, rainfall erosivity, slope length and steepness, 
and cover management factor, and the map with different soil loss risks has been 
produced for soil erosion potential. The result can be beneficial to the erosion 
control and ecological restoration in the degraded mountainous watershed. 
Keywords:  soil erosion, RUSLE, DEM, k-NN method, Upper Min River 
Watershed. 

1 Introduction 

Soil erosion is a worldwide environmental problem that degrades soil 
productivity and water quality, causes sedimentation and increases the 
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probability of floods. The 1998 flood in the Upper Yangtze raised public 
attention to the problems of soil erosion and sedimentation. Soil loss control calls 
for a quantitative evaluation of potential soil erosion on a specific site. Scientists 
have studied different methods to assess soil erosion loss by water, for instance, 
universal soil loss equation (USLE) [1], revised soil loss equation (RUSLE) [2], 
the 137Cs technique [3], and WEPP Hillslope model [4]. Among them, the USLE 
and RUSLE provided a convenient tool for soil loss evaluation by taking the 
climate, geographical terrain, conservation support practice, soil, and vegetation 
into considerations. The RUSLE was developed to incorporate the considerable 
amount of erosion information and to address specifically the application of the 
USLE to land uses other than agriculture [2]. The model can be used to any 
geographic region by modifying its factors. The factors are rainfall runoff 
erosivity factor, soil erodibility factor, slope length and steepness factor, cover 
management factor, and support practice factor [1, 2]. An important reference 
manual for applying the USLE to disturbed forestlands is “A guide for predicting 
sheet and rill erosion on forest land” [5].  The USLE and RUSLE have been used 
widely in evaluating the soil erosion risk in watershed and highland [6, 7, 8].  
    Slope length and steepness factor, which reflects the terrain on a given site, 
can be computed from the digital elevation model (DEM) [9, 10]. Rainfall and 
runoff erosivity factor was calculated based on the storm events and rainfall data 
in many studies [6, 7, 8, 11]. However, in mountainous watershed, orographic 
effects caused by mountainous terrain can result in a significant positive 
correlation between precipitation and elevation [12, 13, 14]. In the UMR 
watershed, precipitation tends to increase with an increase in elevation because 
of the orographic effect of mountainous terrain and the foehn effect [15]. In our 
study area, we examined the relationship between elevation and precipitation for 
38 stations, and selected cokriging as a method for estimating average annual 
precipitation of the whole watershed.  
    Cover management C-factor in the soil loss equation was defined as the ratio 
of soil loss from land cropped under specified conditions from the corresponding 
loss from clean tilled, continuous fallow [1]. However, in large scale UMR 
watershed, where are not mainly covered by agricultural lands, the cover 
management factor is not only affected by the agricultural crops. Ma et al. used 
the proposition of vegetation reflectance in pixel end members to calculate C 
factor [7]. In our study, we used the non-parametric k-nearest neighbour (k-NN) 
multi-source estimation method to estimate coverage data and produce the 
coverage map by integrating the satellite images and field data with optimal 
parameters. The k-NN method has been widely used in a variety of forest 
estimation and biomass mapping applications over the years [16, 17, 18, 19], and 
therefore, can be applied in vegetation cover estimation. 
    Lu et al. [20] explored the relationships between the soil erosion and land use 
and land cover distribution, they found that most climax and mature forests are 
in low erosion risk areas, while agroforestry and pasture are usually associated 
with medium to high risk areas. A good plant cover is generally capable of 
preventing surface erosion, and reducing landslides as well. Removal of 
vegetation can greatly increase runoff and soil erosion particularly in 
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mountainous areas [21]. Soil erosion control especially calls for the forest 
restoration or rehabilitation to reduce the erosion loss and improve soil stability.  
    The questions we are going to answer in the paper are: (1) How to model the 
soil erosion loss in this mountainous watershed? and (2) How much is the soil 
erosion risk in the area?  

2 Study area 

The Upper Yangtze River Basin is a mountainous region, which has an area of 
1.04×106 km2, a mean annual runoff discharge of 4.35×108 m3, a mean sediment 
yield of 5.17×108 t and a population of 1.4×108 [22]. The basin is one of the most 
severely eroded areas in China. Water erosion results in both on-site soil 
degradation and off-site problems related to downstream sedimentation [23]. 
    The Upper Min River, which is one of the most important tributaries of the 
Upper Yangtze River, is 341 km long with a drainage area of 23,037 km2. The 
watershed is located in Sichuan Province, South West China. The area is 
governed by the southeast and southwest monsoons. The complex topography, 
with elevations ranging from 900 m to 5 700 m, results in steep gradients of 
rainfall. The Upper Min river watershed has been divided into five ecozones: the 
Sub-tropical (1300–2200 m), Temperate (2200–2600 m), Sub-alpine (2600–3200 
m), Boreal (3200–3600 m) and Arctic zone (3600–5700 m) [24]. At present, the 
forest cover is around 21% of the whole watershed area. Our 625 inventory plots 
were randomly placed in the middle and upper reaches of the UMR watershed, 
between 31º-34º N, 103º-104º E, with an area of about 7 400 km2, see fig. 1. The 
vegetation ranges from subtropical evergreen broadleaved forest to the alpine 
meadows. 

3 Method 

3.1 Model structure 

The soil loss (A) due to water erosion per unit area per year (Mg ha-1yr-1) was 
quantified using RUSLE by the following equation: 
 

PCLSKRA ××××=                                          (1) 
 
where A is the average soil loss due to water erosion, R the rainfall and runoff 
erosivity factor (MJ mm ha-1h-1yr-1), K the soil erodibility factor (Mg h MJ-1 

mm-1), L the slope length factor, S the slope steepness factor, C the cover and 
management practice factor, and P the support practice. 

3.2 Data and processing 

3.2.1 Rainfall and runoff erosivity factor (R) 
R is the long term annual average of the product of event rainfall kinetic energy 
(E) in MJ ha-1 and the maximum rainfall intensity in 30 minutes (I30) in mm h-1. 
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The R values were correlated with annual precipitation [1, 25]. We used the 
following equation to calculate the R factor, which has been adopted for 
application in the RUSLE model [2]: 
 

2006661.00334.0 aa PPR +−=                                    (2) 
 
where R is rainfall and runoff factor (MJ mm ha-1h-1 yr-1), and aP  the measured 
annual precipitation in mm. 
    The average annual precipitation (APP) and elevation data from 38 
meteorological stations in the research area were obtained to check the 
correlation between precipitation and elevation. The APP surface was 
interpolated with a multivariate geostatistic cokriging model [26]. The R factor 
surface was then calculated by eqn. (2) from the APP surface using the raster 
calculation in spatial analyst. 
 

 

Figure 1: Upper Yangtze River watershed and sample plots in the research area. 

( • )showed the 625 sample plots, (  ) showed the drainage net 
work,  (  ) showed the Upper Yangtze River basin, and (  ) 
showed the detail research area. 
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3.2.2 Slope length and slope steepness factors (LS) 
L factor and S factor, which reflect the topographic erosion susceptibility on a 
given site, were computed together from the digital elevation model (DEM). The 
DEM used is based on a digital topographic map, with 100-m elevation contour 
lines and stream data. In order to achieve a geomorphological realistic surface, it 
was interpolated to a 25-m cellsize grid with the Topogrid algorithm [27] which 
generates a hydrologically correct grid DEM using contour lines and stream data. 
The slope was calculated using the maximum downhill direction method, in 
which the slope value for each raster cell is obtained from the angle formed 
between the cell itself and the lowest neighboring cell. The flow direction was 
calculated with the D∞ (infinite directions) method developed by Tarboton [28], 
by which dispersed or rilled flow is estimated for each cell from the slopes to the 
lower neighboring cells. In flat areas of the DEM (no lower neighboring cells), 
the method approached by [29] was used to calculate flow direction. Flow 
accumulation, the number of cells contributing with its flow to each cell was 
calculated from the flow direction raster. The DEM sinks filling the slope angle, 
the flow direction and the flow accumulation were calculated by Taudem, an 
ArcGIS 9.0 extension developed by Tarboton. For this project, an approach 
developed by Moore and Burch [9, 10] was used to compute LS factor: 

 
4.1××= SLLS                                                  (3)  

mcsfaL )13.22/( ×=                                             (4) 
 

where LS is computed slope length (L) and slope steepness (S) factor, fa the 
flow accumulation (contributing area or upslope area), cs  the cellsize, and m the 
slope-length exponent, as explained in the equation: 
 

)1/( ββ +=m                                                   (6) 
 
where β is the ratio of rill to the interrill erosion for conditions when the soil is 
moderately susceptible to both, and is computed byθ  with the following 
equation [30]: 
 

[ ]56.0)(sin0.3/)0896.0/(sin 8.0 +×= θθβ                         (7) 
 
Whereθ is slope angle in degree. Table 1 shows the values for m computed from 
eqn (6) and (7), and applied to eqn (4) to calculate a raster map for L factor. S is 
calculated by the following equations: 

 
03.0sin10 +×= θS          If slope < 9 percent                     (8) 
05.0sin8.16 −×= θS          If slope ≥ 9 percent                     (9) 
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Table 1:  Calculation of m value from angle. 

θ  angle in degree m value 
θ <1° m=0.2 
1°≤ θ <2° m=0.3 
2°≤ θ <3° m=0.4 
3°≤ θ <6° m=0.45 
6°≤ θ <10° m=0.55 
10°≤ θ <26° m=0.65 
26°≤ θ  m=0.7 

 

3.2.3 Soil erodibility factor (K) 
K factor is soil erodibility factor, which represents both susceptibility of soil to 
erosion and the rate of runoff. Specifically, the k factor is a function of particle 
size distribution, organic matter content, structure and permeability [1, 2, 11]. K 
was calculated using the equation recommended by Wischmeier and Smith [1]: 
 

1317.0))3(025.0)2(0325.0)12(10)(1.2( 614.12 ×−×+−×+−×××+×= − stpeomsavfvfK    (10) 
 
Where K is the soil erodibility factor (Mg h MJ-1mm-1), vf the percentage of very 
fine sand plus silt, sa the percentage of sand, om the percentage of organic 
matter, pe the permeability class, and st the structure class. In this study area, eqn 
(10) was used to calculate K value of each soil type. K values and the map of soil 
type were used to produce the raster map of K factor. 

3.2.4 Cover management factor (C) 
Vegetation cover at three levels (canopy cover, under canopy cover, surface 
cover) was recorded from 625 sample plots. The canopy cover was measured by 
densiometer. The k nearest neighbor (k-NN) method was used to produce the 
canopy cover map and total vegetation cover map by integrating Landsat ETM+ 
image information and collected vegetation coverage. In this study we used two 
consecutive Landsat ETM+ scenes (WRS2 130/037 & 130/038, 10th July 2002 
[31]) for the cover factor estimation. A set of parameters was chosen for the k-
NN method in predicting the vegetation coverage map. The parameters were the 
image features, the weight for each band, the distance, the number of nearest 
neighbors the value of k, and the geographical reference area from which the 
nearest field plots are selected. The leave-one-out cross validation method is 
applied to calculate the root mean square errors (RMSE) and the average biases 
of predictions at the single pixel level for different combination of k-NN 
estimation. The RMSE and biases were used as a measure of reliability of the 
continuous variables. The cover management factor (C) then was calculated from 
vegetation coverage data using the equation recommended by Renard et al. [2].  
 

)03048.0exp(1 HFCC c ×−×−=                          (11) 
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where CC is the canopy cover subfactor range from 0 to 1, cF is fraction of land 
surface covered by canopy, and H (m) is distance that raindrops fall after striking 
the canopy. The equation was used to calculate both the canopy cover subfactor 
and under canopy cover subfactor. For the former, we used the average weighted 
tree height 8.341m; and for the latter, we used the estimated shrub and grass 
height 0.5 m. 

3.2.5 Support practice factor (P) 
P values range from 0 to 1, value 0 represents a very good manmade erosion 
resistance facility, and value 1 represents no manmade resistance erosion facility. 
In the study area, there are some agricultural support practices [7]. However, 
most of the farmlands in the study area are small and self-managed lands, and the 
spatial resolution of ETM+ imageries is 30 m, so it is impossible to distinguish 
the practices in a large scale watershed from the available data. We use P = 1 for 
all the lands. 

4 Results 

The historical precipitation data and station elevations from 38 meteorological 
stations were obtained to estimate the average annual precipitation (AAP) over 
the entire watershed. The AAP showed a significant (p < 0.01) correlation of r = 
0.74 with the station elevation. A multivariate cokriging interpolation method 
was used in the analysis since it takes into consideration the elevation which 
significantly affects precipitation. Root mean square errors (RMSE) were 
calculated to investigate the estimation accuracy. The RMSE by cokriging 
estimation was 86.88 mm, which was reduced by 28.2% to kriging estimation 
(121.2 mm). The estimated AAP was used for calculation of rainfall and runoff 
erosivity R-factor in ArcGIS. The R factor varied from 1288 to 3342 MJ mm ha-

1h-1 yr-1 (fig. 2). 
    The watershed occupied a raster grid space of 7700 rows by 2736 columns, 
and elevations ranged from 1261 m to 5537 m. Approximately 94.7 percent of 
the watershed has slopes steeper than 9 percent. Slope angles ranged from 0 to 
77.2 degrees with a mean of 25.9 degrees and standard deviation of 12.0 degrees. 
As a result of applying Taudem, flow accumulation ranged from 1 to 15496180 
m with 98% less than 1000 m, and slope length factor ranged from 0 to 3398, 
with a mean of 85.9 and 99.2% less than 120. The slope steepness S factor varied 
between 0.03 to 15.88 with a mean of 6.7 and a standard deviation of 3.1. 
    The canopy cover map and total vegetation cover map were produced using 
k-NN method. The root mean square errors (RMSE) and the average biases of 
predictions at the single pixel level were evaluated for each combination of 
parameters. The value of k (8), the distance (55 km), the bands (1, 2, 3, 4, 5, 7) 
and their optimal weights were chosen when RMSE and bias were minimal. The 
C factor was calculated from the produced raster maps by using eqn (5). The 
cover management C factor ranged from 0.015 to 0.892 (fig. 2). 
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Figure 2: Factors for calculation of soil loss potential and the map of classified 
erosion risk. 

    The soil erodibility K factor was between 0.036 and 0.043 Mg h MJ-1mm-1 
(fig. 2). The estimated soil loss for the research area varied from 325 to 83240 
Mg ha-1 per year. According to the soil loss amount and field inventory result, we 
divided them into four ordinal classes: extreme risk (> 10000), high risk (3000 - 
10000), moderate risk (1000 - 3000), low risk (< 10000) and No data (fig. 2). No 
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data values were assigned in two circumstances: firstly, excluded data with flow 
accumulation values higher than 1200 m (1.7% of the cells), which are 
coincident with the main stream paths; and secondly, excluded data with LS 
factor values higher than 1600 (0.0023% of the cells), which happened only in 
isolated cells with extremely high slopes and contributing areas. Totally 0.7% of 
the cells had No data value. Table 2 showed the area and proportion of each of 
the soil erosion potential categories. More than half of the watershed (58.1%) 
showed moderate, high or extremely high erosion risks. 
 
Table 2:  Derivation of the ordinal categories of soil erosion potential and the 

area and proportion of each category. 
 

Numeric range 
(Mg ha-1yr-1) 

Erosion potential Area (ha) Proportion (%) 

0 - 1000 low 297007.7 40.2 
1000 - 3000 moderate 306909.9 41.6 
3000 - 10000 high 120109 16.3 
>10000 extreme 9202.3 1.2 
 no data 4896.8 0.7 

5 Discussion 

In the UMR watershed, the average annual precipitation was positively 
correlated with elevation (r = 0.74, p < 0.01), which supports similar findings in 
Algarve (Portugal), southern Nevada and southeastern of California (r = 0.75, p 
< 0.05) [12, 13, 14]. The effect of elevation on precipitation can be used to 
improve the geostatistical interpolation. The RMSE by cokriging estimation was 
reduced by 28.2% to kriging estimation in the UMR watershed, and 54% 
reduction has been reported in Nevada and southeastern of California [13].  
    Slope calculations made with a maximum downhill method conserved the 
variability and the maximum slope values. This method produced no 
underestimation, since no averaging was used. Flow directions calculated by D∞ 
(infinite directions) improved significantly the water flow modelling, by 
allowing dispersed flow to be modelled over the surface. This method calculated 
the flow direction from the lowest continuous neighbouring cells and 
fractionated the water flow between them, simulating dispersed water flow and 
generating natural looking flow maps. Other studies mostly use the D8 approach 
method, by O'Callaghan and Mark [32]. However, D8 method produces 
unrealistically rilled water flow with lots of straight lines in flow accumulation 
maps, because it can only produce 8 different flow directions, to one of the 
neigbouring cells (cardinal or diagonal direction).  
    The K values of the soils in our study area ranged from 0.036 to 0.043 Mg h 
MJ-1mm-1. Compared to the K values of tested soils in USLE (0.03 - 0.69 tons 
acre hr/hundreds of acre ft-ton in) [1], which are from 0.004 to 0.09 Mg h 
MJ-1mm-1, the soils in the UMR watershed have the moderate erodibility. 
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    To find a suitable C-factor, a canopy cover and total vegetation surface cover 
were calculated using the k-NN technique for their estimation. Several methods 
were applied for topographic normalization of the imagery [33]. However, the 
elevation changes in the study area were so great (1254 m - 5527 m) that not all 
of the shadowing effects were removed from the imageries. To maximize 
spectral variability bands 1-5 and 7 were included in the analysis. The calibration 
of the k-NN parameters was performed as outlined by several articles dealing 
with forest estimation using k-NN methods [27, 34, 35].  The RMSE and 
significance of biases at sample plot pixel level were evaluated in order to 
choose the most optimal parameters, such as numbers of k, distance, and bands 
weights. The value of k (8) was chosen when the variation in bias and RMSE 
were minimal. The built in cross-validation method of bias and error estimation 
was applied in all calculations.  
    Morgan [36] argues that 10 Mgha-1yr-1 is an appropriate boundary measure of 
soil loss over which agriculturists should be concerned. This was identified as 
the separation of the low and moderate categories in RUSLE [2]. Soil loss in 
highland conditions in Kenya ranged from 30 to 666 Mg ha-1yr-1 [8], while the 
calculated soil loss (325 - 83240 Mg ha-1yr-1) in our research area is much 
higher. The complex terrain, with elevations from 1261 m to 5537 m, and slopes 
from 0 to 77.2 degree could be one reason to compute so high soil loss potential. 
Van Remortel et al [37] argue that erosion model can be used to derive patterns 
of erosion, but not necessarily the actual loss of erosion, because of the 
limitations of the methods used to derive some component factor values. 
Millward and Mersey [6] found that relative comparisons of soil loss among land 
areas are more critical than assessing the absolute soil loss in a particular cell. A 
visual interpretation and validation of the resulting erosion risk map was 
performed for all the sample clusters. The sites were given a subjective risk scale 
ranging from No risk – Low – Moderate – High – Extreme bases upon the 
general site characteristics. The high or extreme high erosion risks mostly 
occurred on the downhill gullies with long proceeding slope lengths (red areas in 
the map). Some considerations should be given to the vulnerable areas, where 
the landslides or mudslides could happen easily according to the soil loss 
potential. 
      A good plant cover is generally capable of preventing surface erosion [21].  
The cover management factor with a range from 0.015 to 0.892 indicated that the 
loss of soil erosion can be greatly reduced by a higher vegetation cover. For the 
large scale soil conservation, little work can be done to reduce rainfall and runoff 
erosivity, soil erodibility, slope length and slope steepness, so vegetation 
restoration and support practice would be the way to reduce the soil loss risk.  
    We have estimated the error from ETM+ images to the canopy cover map and 
total vegetation coverage map, and calculated the interpolation error of average 
annual precipitation surface. However, the model is still subjected to errors due 
to the limitations of the methods to estimate some component factor values, and 
the lack of possibilities on quantitatively verifying the actual erosivity from our 
sites. Problems seemed to be mostly concentrated in areas with thick canopy 
coverage and a high measured ground cover percentage. The erosivity 
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discrepancies in the forests caused by the modelled rainfall influence from the 
tree canopies on the ground without taking properly into account the forest floors 
ground layer. Problematic areas also include rill and valleys where the calculated 
risk values seemed relatively high when compared with field experiences. This 
may be explained by the methods used in calculating the LS factor. On the other 
hand hill tops within the Arctic zone (3600-5400m) were somewhat 
overestimated since the ETM+ cover of these regions was highly cloud covered.  
The results could be improved if a cloud free fully topographically normalized 
image was available, and the C-factor calculation model would take into 
consideration under canopy ground coverage.  
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