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Abstract 

This paper is concerned with Euler buckling of long slender tubes subjected to 
internal pressure. A small disturbance from its perfectly straight form is imposed 
to the tube to account for the effect of the non-conservative, follower forces 
generated by fluid pressure. An equivalent lateral distributed force is derived by 
considering the geometric changes arising from the flexural deformation of the 
tube. A new differential equation governing the buckling mode of the tube 
considered as a column is obtained. This equation includes the inertia term for 
investigating buckling through the dynamic stability criterion. The theory is 
applied to several cases of pressurised tubes under various loadings and support 
conditions. The results show that internal fluid pressure can have a significant 
load transfer role that may lead to buckling in certain cases but has no apparent 
effect in others. 
Keywords: cylindrical tubes, internal fluid pressure, Euler buckling. 

1 Introduction 

Axially compressed cylinders buckle as shells for a wide range of their length to 
diameter ratio. Due to the engineering relevance of this problem, it has attracted 
considerable attention and, as a consequence, various issues relating to its 
analysis have been addressed in a large number of publications. Among the 
issues that have been investigated is the effect of internal or external fluid 
pressure on the local shell buckling mode and the respective critical load of such 
structures or containers [1–4]. 
     Very long slender cylinders may however buckle as elastic columns whose 
critical load can be computed from the well known Euler’s formula. Such 
columns, usually referred to as cylindrical tubes, may also be subjected to 
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internal pressure whose direction is deformation dependent and therefore non-
conservative. An engineering design comprising axially compressed and 
internally pressurised tubes is shown in fig. 1. This is a schematic representation 
of a hydraulic ram consisting of two internally, fluid-pressurised tubes within a 
co-axial outer cylinder. The outer tube slides over the inner one and lifts the 
weight P under the action of the liquid pressure pf and the gas pressure pg 
existing within the volume between the inner tube and the cylinder. The former 
generates a force Po2 acting on the top end plate of the outer tube, the latter a 
supporting force Pg at its base. The inner tube is directly subjected to a 
compressive axial force Pi2 also due to the liquid pressure pf. 
 

 

Figure 1: Schematic of hydraulic ram design. 

     Given the material and geometric characteristics of both tubes, their Euler 
buckling loads can be determined and compared to the respective axial loads. For 
the outer tube in particular, the internal pressure reduces the applied compressive 
force by Po2 thus appears to increase, effectively, the critical load by the same 
amount. The Euler solution however is based on the assumption that a slightly 
buckled form does not affect the orientation of the applied forces. This is not true 
for any of the three forces Po2, Pi2 or Pg, which remain tangent to the deformed 
axis of the tube after buckling. It is also necessary to examine whether the 
pressure on the flexurally deformed wall of the tubes contributes to their 
instability. 
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     The aim of the present analysis is to assess the influence of internal pressure 
on the stability of a long open or closed tube. Since fluid pressure produces non-
conservative, follower forces, this problem is addressed by applying a small 
initial disturbance from the perfectly straight, vertical position. If the disturbance 
is static, the problem is formulated by considering the so called adjacent 
equilibrium of the tube. This approach was adopted by Kounadis [5] who 
investigated a number of non-classical buckling problems involving long tubes 
under axial compression and internal pressure. The effectiveness and reliability 
of the adjacent equilibrium approach to such problems is re-examined here by 
attempting to model more rigorously the interaction between the pressurised 
fluid and the flexurally deformed tube wall. It is shown that, for cantilevered 
tubes, the determination of the critical load may not be always possible by this 
method. In certain such cases, the applicability and effectiveness of the dynamic 
criterion of stability is discussed. For tubes pinned at both ends however, 
buckling is predicted for critical loads obtained using the Euler formula. 

2 Bending of pressurised tubes 

Referring to the deformed tube element shown in fig. 2, the extension of a 
longitudinal fibre s at a distance y from the neutral axis is 

 (s) = –
y

R
s (1) 

where R is the radius of curvature of the deformed beam given by 
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v(x) the deflection and the approximation is valid for very small deflection. Thus, 
the longitudinal strain in the tube should be given by 

 x = –
y

R  
 

     Applying Hooke’s law, the stress is given by 

 x = Ex = –E 
y

R  
 

and the bending moment by 
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     In a straight tube with inner diameter D, subjected to internal pressure p, two 
opposite forces, both equal to pD(s), are acting on the inner wall surfaces of the 
element above and below the neutral axis. In a bent tube, the surface under 
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Figure 2: Deformed configuration of a beam element of length s. 

tension is greater than that under compression. Thus, for y > 0, the pressure 
applied on a projected area is reduced by 
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where the cross-sectional angular co-ordinate  is defined in fig. 3 and y = 
(D/2)cos, z = (D/2)sin. 

 

Figure 3: Cross section of a hollow tube. 

     For y < 0, the projected area is increased by exactly the same amount, so that 
bending generates a lateral force per unit length of the deformed beam axis, 
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normal to the axis in the direction from the compressed to the extended fibres of 
the beam. According to eqn (3), this force is given by 

 q = 
2π

4

D
p

R
 Pf 

2
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d

d

v

x
 (4) 

where Pf is the force acting on the end plate of a closed tube or on the piston 
imposing the pressure in an open tube. 
     Equilibrium of forces acting on the tube element of fig. 2, in the direction 
normal to the axis of the tube, gives 

 –V + d
V

V x
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where V represents the shear force, m the mass per unit length and t the time. The 
right hand side accounts for small lateral oscillations which are imposed when 
the dynamic criterion of stability is applied. Moment equilibrium of the same 
tube element gives 

 –M + d
M

M x
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where P is the net axial force applied in the undeformed x direction. Eqns (5) and 
(6) are simplified to 
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Substituting V from eqn (8) into eqn (7) and accounting for eqns (2) and (4) 
finally gives 
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     The solution of the above equation is sought under various applied axial loads 
P and boundary conditions. 

3 Tubular cantilevers 

The analysis is first applied to open vertical tubes, fixed at their base and free at 
the top, subjected to two types of internal pressure. In the first problem, the tube 
is subjected to the fluid’s and its own weight. The tube is filled with fluid with 
specific weight f so that the fluid pressure at height x is f(L – x). Accounting for 
the weight of the tube wall itself generates a vertical compressive force 
P = tAt(L – x), where t is the specific weight of the tube material and At the 
cross section of the tube. 
     Considering the static equilibrium of the tube at a slightly deformed 
configuration as shown in fig. 4, eqn (9) becomes 
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     For an empty tube under its own weight, the governing equation can be 
directly obtained from eqn (8) by setting V = 0. The solution to this problem is 
given by Timoshenko and Gere in their classical monograph [6]. In the case of a 
tube filled with a liquid, the problem represented by eqn (10) is certainly more 
complex than that formulated by Kounadis [5], who simply added the weight of 
the liquid to that of the solid tube and thus obtained essentially the same solution 
as that presented by Timoshenko and Gere. 

 

Figure 4: Cantilever tubes under internal pressure. 

     Eqn (10) can be simplified if the total weight per unit mass of the filled tube 
is assumed to be much larger than that of the tube wall alone. Then, the third 
term on the left hand side of eqn (10) can be neglected and the substitution 
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     This is identical to that governing the deflection of an empty tube under its 
own weight and a general solution for u can be found in terms of Bessel 
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functions in exactly the same manner [6]. The boundary conditions that should 
be satisfied by u are however different. More specifically, 
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2

d d
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u u

xx
  at x = L  (13) 

since both shear force and bending vanish there. It is possible to show that, for 
the solution to satisfy both conditions (13), the constants of integration must both 
vanish. Therefore, only the straight form of equilibrium is possible. This 
conclusion is consistent with that reached in the case of a concentrated follower 
force applied at the top of a column [6]. It may be possible to determine the 
critical load using the dynamic criterion of stability but this is not attempted here 
because of the mathematical complexity of the problem and the apparent lack of 
engineering interest in its solution. 
     The tube can also be subjected to a high uniform pressure pf relative to which 
the pressure due to the fluid’s weight can be neglected. In such a case, the 
adjacent equilibrium of the tube is governed by 
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in which Pf is constant. It has been shown by Timoshenko and Gere that this 
equation leads to the straight tube as the only possible equilibrium configuration. 
Subsequent application of the dynamic criterion of stability [6] provided a 
formula for the critical value of Pf from which the critical pressure can be 
obtained using eqn (4). A complete account of this solution was more recently 
presented by Kounadis [5]. 

4 Hydraulic ram 

The fully extended ram can be assumed as firmly held in place against any lateral 
movement at the three levels A, B and C shown in fig 0. The two ends of each 
tube may also be subject to a degree of rotational constraint, but this is expected 
to be far from the ideal clamped end condition. The tubes are therefore analysed 
with the conservative assumption of pinned support at both their ends. 

4.1 Outer tube 

The free body diagram of the top, outer tube at a slightly deformed configuration 
is shown in fig. 5(a). At the two ends of the tube, internal pressure generates the 
forces  

 Po2 = 
2π

4
oi

f
D

p = Pof, Po1 = 
2 2π( )

4
oi io

f
D D

p


 (15) 

where Doi and Dio are, respectively, the inner diameter of the outer tube and the 
outer diameter of the inner tube. 
     Thus, the static version of eqn (9) becomes in this case,  
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where E is the Young’s modulus of the material, Io is the second moment of 
cross-sectional area, while Pof is obtained from eqn (4) for p = pf and D = Doi. 
For very small deviations from the straight line configuration, cos2  1 and  
eqn (16) is reduced to 
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Figure 5: Buckled profiles of the tubes; (a) outer tube, (b) inner tube. 
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     But this is the differential equation governing the buckling mode of a straight 
column subjected to a conservative compressive force P. The critical value of P 
for the assumed pinned-pinned end conditions is thus provided by the well 
known Euler formula 

 Pc = 
2

2

π o

o

EI

L
 (18) 

where Lo the length of the outer tube. It is thus evident that internal pressure has 
no effect on the buckling capacity of the outer tube. 
     An alternative form of the equation of equilibrium can be deduced by 
obtaining the  expression for M(x)  and substituting it in eqn (2).    Referring to  

x, due to q over s at  (x < ), is 
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 =–(– x)Pf d(sin) + [v() – v(x)] Pf d(cos)  

since ds/R = d. Integrating by parts over the length (x, Lo) gives 

 Mq(x) = (Lo– x)Pof sin2 – v(x)Pof cos2   

since (Lo) = –2 and v(Lo) = 0. It can be shown that overall equilibrium of the 
slightly bent column is satisfied for horizontal reactions Ho1 = Psin1 at B and 
Ho2 = 0 at A. Thus, the total bending moment at x is  

 M(x) = –(Lo – x)Po2sin2 – v(x)(P – Po2cos2) + Mq(x) = – v(x)P  

since Po2 = Pof. Therefore, only the conservative force P contributes a moment 
appearing in the equation governing the deflection, which becomes 

 EIo 
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d

v
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  + Pv = 0  

leading to the same classical Euler buckling formula mentioned above. 

4.2 Inner tube 

The free body diagram of the inner tube at a slightly deformed configuration is 
shown in fig. 5(b). At its top end, the internal pressure generates the compressive 
follower force 

 Pi2 = pf 

2 2π( )

4
io iiD D

 
 

where Dii is the inner diameter of the inner tube. Hence, the version of eqn (9) 
governing the static adjacent equilibrium state is, in this case, written 
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fig. 5(a), the bending moment at 
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where Ii is the second moment of cross-sectional area of the inner tube while Pif 
is obtained from eqn (4) for p = pf – pg and D = Dii. For very small deviations 
from the straight line configuration, cos2  1 and eqn (16) is reduced to 
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where Peff = Pi2 + Pif. But this is the differential equation governing the buckling 
mode of a straight column subjected to a follower compressive force Peff. It can 
be shown that the critical value of Peff for the assumed pinned-pinned end 
conditions is given by  

 (Peff)c = 
2

2

π i

i

EI

L
 (21) 

that is, the well known Euler formula where Li is the length of the inner tube. It 
should be noted that the same critical load is predicted by the dynamic criterion 
of stability for this particular combination of support conditions.  
     During normal lift operation, the inner tube is subjected to internal and 
external pressures of almost identical magnitude; this keeps Peff at a value lower 
than that of P and the inner tube is safe against buckling if the outer tube has 
been designed to that effect. The situation becomes critical in the case of sudden 
loss of gas pressure. Then the outer tube is assumed fully extended and the oil 
pressure suddenly increased to a value balancing the total applied load, that is, 

 pf = 
2

4

π io

P

D
 (22) 

     As previously argued, this change in internal pressure has no effect on the 
buckling behaviour of the outer tube whose safety factor remains the same. The 
safety factor of the inner tube however changes considerably and can be obtained 
by comparing the applied pressure given by eqn (22) with the critical pressure 
obtained from  

 (Peff)c = (pf)c

2π

4
ioD

 = 
2

2

π i

i
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L
 (23) 

     It is interesting to note by comparing eqn (22) with eqn (23) that Peff = P, that 
is, the fluid transmits the total conservative applied force from the top of the ram 
to the inner tube as an axial follower force. 
     Consideration of overall equilibrium of the slightly bent inner tube provides 
the horizontal reactions Hi1 = Pif sin1 at C and Hi2 = (Pi2 + Pif)sin2 at B. 
Considering again the end conditions (Li) = –2 and v(Li) = 0, the bending 
moment is deduced as 

 M(x) = (Li – x)Pi2sin2 –v(x)Pi2cos2 –(Pi2 + Pif)(Li – x) sin2 + Mq(x)  

where Mq(x) = (Li– x)Pif sin2 – v(x)Pif cos2. Hence 

 M(x) = –v(x)(Pi2 + Pif) cos2  –v(x)Peff   
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     Substituting the above expression into eqn (2) generates a differential 
equation yielding the same critical load as that given by eqn (20). 

5 Concluding remarks 

It is surprising that very little work on the Euler buckling of long, slender, 
internally pressurised tubes is reported in the current technical literature. The 
problem might have been addressed in early structural studies, access to which is 
not easy today. The need for designing the hydraulic ram against buckling 
prompted the present investigation, which led to the derivation of a simple 
analytical tool based on beam theory for the prediction of the critical load of 
pressurised tubes using either a static or a dynamic stability criterion. 
     The analysis shows that buckling predictions depends strongly on the specific 
loading and support conditions. The non-conservative nature of the fluid loading 
appears to have a stronger effect on cantilevered columns (fully fixed at the base, 
free at the top) for which the application of the dynamic stability criterion is 
necessary for obtaining the critical loads. In contrast, predictions for columns 
pinned at both ends can be obtained considering the static adjacent equilibrium 
of a slightly bent form. For the two specific cases of engineering interest 
analysed, buckling in the first is due only to the applied conservative force while 
in the other, the follower force acts as an equivalent conservative force. It is 
interesting to compare these conclusions with the established view that internal 
pressure has generally a beneficial effect on the buckling capacity of cylindrical 
shells subjected to axial compression [7]. 
     The highest priority for further work should be the validation of the simple 
analytical model. This can be experimental and numerical; finite element 
modelling can be used for the latter but this can be very challenging considering 
the amount of resources required for a non-linear analysis with adequate mesh 
refinement of a geometrically simple solid but with strongly disproportional in 
its dimensions. Once validated, the simple analysis can be further tested through 
its application to a wider range of loading and support conditions of certain 
engineering interest and significance. 
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