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Abstract  

One of the mathematical models dealing with fluid flow in fractured porous 
media is the dual porosity model. The key issue governing this model is the 
transfer function which representing fracture-matrix interaction. Many formulas 
for this function had been presented since the 1960s. In this work, a review for 
these formulations was done. Based on the assumption used in deriving the 
transfer function formulas, they are classified into two groups. The first group 
includes those derived assuming semi-steady (pseudo-steady) state flow and the 
second includes those assuming transient state flow. This work will help worker 
selecting the formulation that best represent the flow situation and the type of 
porous media. 
Keywords: transfer function, fractured porous media, shape factor. 

1 Introduction 

Fluid flow in fractured porous media encountered significant progress which 
resulting from the efforts and researches conducted to present a mathematical 
model best representing the phenomena. The key issue in any mathematical 
model representing fluid flow in a fractured porous media is how to handle the 
fracture – matrix interaction in different conditions. Two main models were 
widely used in solving the flow mechanism in fractured porous rock, the first is 
the dual porosity model presented by Barrenblatt et al. [1] and Warren and 
Root [2] which considers the highly permeable fractures are entirely responsible 
for flow between matrix blocks and flow to the well bore while the matrix blocks 
act as source of fluids. 
     The second model is the dual porosity dual permeability. This concept may be 
attributed to Chen Huan-Zhang [3]. It permits matrix-matrix to communicate in 
addition to matrix-fracture flow. This connection induces capillary continuity 
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through the connected matrix block. The mathematical formulations representing 
the both models include a function named the “transfer function” representing 
the fracture–matrix interaction. Shape factor is one of the important parameters 
in calculating the transfer function. 
     Since the 1960s, many researchers tried to give a mathematical formulation 
for the transfer function, including the shape factor, that best represent the actual 
relation between the fracture and the matrix system. 
     Many workers on the fluid flow in fractured porous media face a dilemma in 
selecting the proper mathematical formulation for the transfer function; this 
research presented a review for these formulations to enable workers on fluid 
flow in naturally fractured porous media selecting the proper one. 

2 The original model 

In 1963 Warren and Root [2] introduced the original dual porosity concept for 
fractured reservoirs. Their model assumes a continuous uniform fractured 
network oriented parallel to the principle axes of permeability. The matrix block 
and the fracture network in this model are occupied the same physical space and 
assumed identical rectangular parallel piped with no direct communication 
between matrix blocks. The mathematical model describing 1D flow of slightly 
compressible fluid for dual porosity model is:  

 
௄೑
ఓ

డమ௉೑
డ௫మ

െ ߬௠௙ ൌ ௙ܥ௙׎ 
డ௉೑
డ௧

 (1) 

     Eqn. (1) is similar to the continuity equation for a single porosity model 
except for the presence of the term (߬௠௙), this term represent the fracture matrix 
interaction. It has the following formula: 

 ߬௠௙ ൌ
ఙ௄೘௏

ఓ
ሺ ௙ܲ െ ௠ܲሻ (2) 

The parameter ߪ defined as the shape factor; it reflects the geometry of the 
matrix and the fracture intensity. For a cubic matrix block ߪ defined as: 

ߪ  ൌ ଶேሺேାଶሻ

௅మ
 (3) 

where L is the length of the matrix block and N is the number of normal sets of 
fractures; 1, 2 or 3. If rock matrix block (cubic) have dimensions a, b, and c, then 

 ൞

ܮ ൌ ܰ   ݎ݋݂                  ܽ ൌ 1

ܮ ൌ
ଶ௔௕

௔ା௕
ܰ ݎ݋݂                ൌ 2 

ܮ ൌ
ଷ௔௕௖

௔௕ା௕௖ା௖௔
ܰ  ݎ݋݂      ൌ 3

 (4) 

3 Modifications 

There are four principal recovery processes in fractured reservoirs: fluid 
expansion, capillary imbibition, gravity drainage, and diffusion. These different 
effects will give the overall transfer between fracture and matrix. 
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     Workers try to modify the original model by either modifying the original 
equation of the transfer function to include the different physical interaction 
or/and presenting modified values for the shape factor only.  
     This work classifies the modifications into two groups, the first group 
includes modifications or new relations derived based on the assumption of 
semi-steady state diffusivity equation while the second group includes that based 
on transient and semi-steady state diffusivity equation.  

3.1 Group one: pseudo-steady state functions 

The Warren Root formulation was extended for three-dimension multiphase flow 
by Kazemi et al. [4]. Based on a direct material balance in a cubic matrix block 
under assumption of pseudo- steady state flow and matrix pressure equals the 
pressure in the center of the matrix block.  They introduce the following transfer 
function formulation;  

 ߬௠௙ ൌ ఈ ൣሺߩఈߣ௠ܭߪ ןܲ െ ሻ௙ܦఈߛ െ ሺ ןܲ െ  ሻ௠൧ (5)ܦఈߛ

They give also a definition for the shape factor as: 

ߪ   ൌ 4 ൤
ଵ

௅ೣ
మ ൅

ଵ

௅೤
మ ൅

ଵ

௅೥
మ൨ (6) 

Gilman and Kazemi [5] updated the earlier dual porosity simulator of Kazemi et 
al. [4] by modifying the treatment of mobility. They include the fracture relative 
permeability in eqn.(5), when fluid is flowing from the fracture into the matrix, 
so the transfer function calculated as :  

 ߬௠௙ ൌ ఈ௠ߣఈ ൛߱ߩ௠ܭߪ ൅ ሺ1 െ ߱ሻߣఈ௙ൟൣሺ ןܲ െ ሻ௙ܦఈߛ െ ሺ ןܲ െ  ሻ௠൧ (7)ܦఈߛ

where ߱ a weight factor is varies from zero to one and equals to one if flow is 
from the matrix to the fracture. 
     To include the gravity effects, Thomas et al. [6] introduce the pseudo relative 
permeability and capillary pressure curves. They use the term ߣఈ௙

כ  instead of ߣఈ௙ 
in eqn.(7) and calculate it depending on the flow direction; if water flowing from 
the fracture to the matrix  krw calculated from: 

௥௪ܭ  ൌ  ܵ௪௙ሾܭ௥௪ሿ௉௖ୀ଴ (8) 

and if oil flows from the fracture to the matrix system Kro is calculated from  

௥௢ܭ  ൌ  ܵ௢௙ሾܭ௥௢ሿௌ௪௠ (9) 

For flow from the matrix to the fracture, unaltered relative permeability values 
are used. To include the effect of block coverage they multiply the matrix phase 
relative permeability value by the fracture phase saturation, i.e. not all matrix 
block within a computational cell will undergoes imbibitions. 
     Litv k [7] presented a dual porosity formulation with a modified gravity 
potential 

 ߬௠௙ ൌ ఈ௙ൣܥఈߣ ఈߩ௠ܭߪ ௙ןܲ െ ௠ןܲ െ ൫ߛఈ௠ െ ఈ௠ܦఈ௙൯൫ߛ െ  ఈ௙൯൧ (10)ܦ

a
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The gravity term in eqn. (10) defines the gravity head with segregated water 
level in the matrix and fracture. The Cαf  ܥఈ௙multiplier is a coverage factor. For 
blocks completely immersed in water Cαf =1 ܥఈ௙ ൌ 1, meaning that there will be 
a large imbibition transfer rate than a block partially immersed in water for 
which Cαf < 1  ܥఈ௙ ൏ 1. 
     Sonier et al. [8] presented another modification for eqn. (7) by assuming that 
the phase saturations within the fracture are the same in any portion of the grid 
cell and all matrix blocks have the same saturation. For an oil water system, the 
water level in the fracture and matrix defined as: 

௙ܦ  ൌ  
൫ௌೢ೑ ିௌೢ೔೑൯௅೥

ଵିௌ೚ೝ೑ିௌೢ೔೑
 (11) 

௠ܦ  ൌ 
ሺௌೢ೘ ିௌೢ೔೘ሻ௅೥
ଵିௌ೚ೝ೘ିௌೢ೔೘

 (12) 

In 1992, Kazemi et al. [9] performed imbibition experiments and fitting the data 
into single correlation. They proposed a generalized shape factor as: 

ߪ  ൌ  
ଵ

௏೘
∑ ቀ

஺೘
ௗ೘
ቁ
௝

ே
௝ୀଵ  (13) 

Am is the area of a surface area open to flow in a given direction and dm is the 
distance from the open surface to the centre of the matrix block. The summation 
is done over all open surfaces of the matrix block. 
     The diffusivity equation for single-phase flow at semi-steady state solved by 
Coats [10] to give a shape factor of 12/L2, 28.45/L2 and 49.58/L2 for the one, two 
and three-dimensional cubic rock matrix respectively. However, he 
recommended using 8N/L2 for calculating the shape factor.   
     Lim  and Aziz [11] presented the derivation of new shape factor by 
combining the geometrical aspect of the system with analytical solutions of the 
pressure diffusion equation for flow between the matrix and the fracture. They 
found that the shape factor for a system with one set of fracture is π2/L2, while 
the resulting shape factors are 18.17/L2 and 25.67/L2 for two and three sets of 
fractures respectively. 
     They also showed that the shape factor for system with anisotropic 
rectangular matrix block is: 

ߪ  ൌ
గమ

௅మ
ൌ

ଽ.଼଻

௅మ
ߪ ൌ

గమ

௅మ
ൌ

ଽ.଼଻
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ߪ  ൌ ଶߨ ൬
ଵ

௅ೣ
మ ൅

ଵ

௅೤
మ ൅

ଵ

௅೥
మ൰ (14) 

Yu-Shu et al. [12] presented a physical based upstream weighting scheme for 
modelling fracture matrix flow and interaction in fractured reservoirs. This 
approach based on continuity of capillary pressure at the fracture interface in 
estimating physical correct relative permeability for calculating multiphase flow 
between them. They derive a relation to calculate the cumulative fracture-matrix 
mass flow or exchange rate:  
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 ܳிெ ൌ
ሺ஻ ଶ⁄ ሻమ

஽ಷ

௤ಷಾ
௉

 (15) 

where ݍிெ is the Laplace transformed transient fracture- matrix flux, B the 
fracture spacing or the dimension, DF diffusivity term for the fracture. 
     Heinemann and Mittermeir [13] presented a study to show that the shape 
factor derived by Kazemi et al. [9] is generally valid irrespective of any 
assumption regarding the shape of the matrix blocks surrounded by the fracture 
network and the number of phases. They extended eqn. (13) to derive a 
generalized shape factor for anisotropic matrix permeability to be, 

ߪ  ൌ
ଵ

௏೘
∑ ௜௝ܣ

ห௞ധ௡ሬറೕห

หௗೕห
ே
௝ୀଵ  (16) 

where i,j grid point index,  ധ݇  permeability tensor ,  ሬ݊റ normal unit vector and d is 
the distance between two grid points. 

3.2 Group two: transient functions 

The assumptions of orthogonal fracture system, one dimensional pseudo steady 
state flow generally incorporated in deriving a transfer function formula resulted 
in limitations in these formulations. 
     Many workers tried to derive a more general formulation by taking into 
consideration the possible naturally occurred lithology and flow conditions like 
non-orthogonal fracture system, three-phase flow, transient flow and fully or 
partially immersed matrix which cause the rise of a new formulation for the 
shape factor. 
     Chang [14] derived the shape factor in the transfer function by solving the 
three-dimensional diffusivity equation of a rock matrix block under unsteady-
state production in four cases by assuming different boundary conditions. (1) 
Constant fracture pressure; (2) constant flow rate; (3) constant fracture pressure 
followed by linearly declining fracture pressure; and (4) linearly declining 
fracture pressure followed by constant fracture pressure.  
     Four different time dependent formulation were presented. For the case of 
constant fracture pressure and 1-D matrix-fracture flow in the x-direction, the 
shape factor was: 

ߪ  ൌ గమ

௅ೣ
మ

∑ ௘௫௣ൣିሺଶ௠ାଵሻమగ௧ವ಴൧
∞
೘సబ

∑ భ
ሺమ೘శభሻమ

௘௫௣ሾିሺଶ௠ାଵሻమగ௧ವ಴ሿ∞
೘సబ

 (17) 

where 

஽஼ݐ  ൌ
௞ೣ ௧

௅ೣ 
మ ఓ௖׎

 (18) 

He concluded that the shape factor values are time-dependent under the unsteady 
state condition and it decreases with depletion time in the transient stage and 
converges to a constant value in semi-steady state. 
     Another approach was by Sarma [15], Sarma and Aziz [16]. They tried to 
overcome limitations by deriving a final form for the transfer function as: 
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௪௠௙ݍ  ൌ ௉஽൫ߪ௪ߣ௪ߩ ܸ  ௪ܲ െ ௪ܲ௙൯ െ ௌ஽ሺܵ௪ߪ௪ߩ ׎ܸ  െ ܵ௪௖ሻ (19) 

For the particular case of two parallel fracture with pseudo-steady state pressure 
diffusion and instantaneously filled fracture, they define the shape factors in 
eqn. (19) by 

௉஽ߪ  ൌ
గమ

௅మ
        and        ߪௌ஽ ൌ  ଵ (20)ିݐܾ

where b is a constant depending on the porous media properties. 
     Good match was obtained with a reference solution using a fine grid model 
with ECLIPES 100 for a conceptual representation of a fractured reservoir with 
source and sink. 
     R g l-German and Ko scek [17] conducted a series of experiments to study 
air and oil expulsion from rock samples by capillary imbibitions of water in 3D 
geometry. They reported two different modes of matrix and fracture fill up. 
Relatively slow flow through fracture is found when fracture to matrix fluid 
transfer is rapid, fracture aperture is wide, and/or water injection is slow. In this 
regime, fracture fill slowly with fluid and the regime referred as “filling 
fracture.” On the other hand, a relatively slower rate of fracture to matrix 
transfer, narrow apertures, and/or high water injection rates leads to rapid flow 
through fractures. This regime is labelled “instantly filled”. They found that in 
the first regime the mass of water-imbibed scales linearly with time while in the 
second one the imbibitions performance scales as the square root of time. 
     An analytical model was developed to describe the amount of water transfer 
into the matrix so that matrix-fracture transfer function and the shape factor 
necessary for numerical simulation can be formulated. 
     Based on the experimental results Rangel-German and Kovscek [18] perform 
a dimensional analysis for the experimental data to derive a new time dependent 
matrix-fracture transfer shape factor formulation and transfer function for both 
filling and instantly filled fracture transfer.  
     They presented transfer function relation is similar to that presented by Sarma 
and Aziz [16] using the same definition for ߪ௉஽ but they gave a new definition 
for ߪௌ஽: 

ௌ஽ߪ  ൌ כߪ  ൬
௧ವ
௧ವ
כ ൰

ି௠

         for           ݐ஽ ൏ ஽ݐ
כ  (21) 

and  

ௌ஽ߪ  ൌ ஽ݐ      for                       כߪ  ൒   ஽ݐ
כ   (22) 

where ݐ஽
כ  is 0.1 and m is a function of flow rate and fracture aperture. This 

formulation converges to כߪ for pseudo-steady state condition. 
     In 2010, Rangel-German et al. [19] solve the pressure diffusivity equation for 
single phase using non-uniform boundary conditions and approximating solution 
with an exponential function. They obtain values for ߪ௉஽ in eqn.(19) for one, 
two, and three sets of orthogonal fractures, they are 4π2 /L2 4ߨଶ/ܮଶ , 8π2 /L2 and 
12π2 /L2 8ߨଶ/ܮଶ respectively.  

an e v
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     The approximated shape factors provide good results for systems when the 
transient behaviour of pressure is short.   
     Huiyun et al. [20] presented a general formulation for the transfer function. 
Their formulation is a sum of contributions resulting from the different physical 
effects, with a functional form that gives the correct early and late-time 
behaviours: 

 Γ௖ ൌ ∑ ൣΓ௣௖ௗ ൅ ௣௖௠൫ܥ ௣ܶ௘ ൅ ௠׎ ∑ ௣ܶ௤௦௤ஷ௣ ൯൧ ௣ୀ௢,௪,௚  
 ߬௖ ൌ ∑ ൣ߬௣௖ௗ ൅ ௣௖௠൫߬௣௘ܥ ൅ ௠׎ ∑ ߬௣௤௦௤ஷ௣ ൯൧ ௣ୀ௢,௪,௚  (23) 

where Γc is the transfer rate of component c . ߬௣௖ௗΓpcd
  is transfer caused by 

molecular diffusion; T is a transfer function with units of rate. ߬௣௘Tpe is the 
transfer rate of phase p resulting from fluid expansion, Tpqs is the transfer of 
phase p resulting from displacement by phase q governed by saturation changes. 
     They gave detailed mathematical formulas for the components of eqn. (23). 
These formulas include pressure and saturation dependent parameters.  
     Hassanzadeh et al. [21] focused their study on single-phase flow between 
matrix and fracture when the matrix pressure is isotropic. They conducted an 
analytical solution for the partial differential equation describing flow of slightly 
compressible fluid in fractured media subjected to three different boundary 
conditions (constant pressure at matrix border, constant rate at matrix boundary, 
and constant rate at wellbore) to evaluate a numerical value for the shape factor. 
A slap shaped (1D), cylindrical-shaped (2D), and spherical shaped (3D) matrix 
blocks were used with radial and linear flow models. Results show that the value 
of the shape factor is time dependent at early stages then converges to a stabilize 
value and the flow model does not effect on the stabilized values of the shape 
factors. They ranges from 9.87/L2 for the case slab with constant pressure at 
matrix boundary to 12/L2 for the case of slab with constant rate at wellbore. 
     Golghaddashti  [22]  utilized a mathematical model to obtain shape factor 
for  gas-oil gravity  drainage  mechanism  for  a  single  matrix  block in  a gas  
cap where matrix block and surrounding fractures fully saturated by oil and 
gas respectively. He presented a general form to calculate matrix-fracture 
transfer function in gas-oil system using the following expression for the shape 
factor: 

௭ଶܮ ߪ  ൌ
గమ

ସ

∑ ሺషభሻ೙

ሺమ೙శభሻ
௘௫௣൬ିቀ

మ೙శభ
మ

ቁ
మ
గమ௧ವ൰

మ
∞
೙సబ

∑ ሺషభሻ೙

ሺమ೙శభሻయ
௘௫௣൬ିቀ

మ೙శభ
మ

ቁ
మ
గమ௧ವ൰∞

೙సబ

 (24) 

In this equation, the shape factor starts from the value of (2) and demonstrates a 
transient behaviour at early time then converges to π2 /4 at late time. The time 
variation of the shape factor is negligible after tD=0.4 ݐ஽ ൌ 0.4 then it becomes 
constant after tD=0.7ݐ஽ ൌ 0.7.  
     The obtained model verified against several fine grids numerical simulators as 
well as two major existing models used in commercial simulators. 
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     Ranjbar and Hassanzadeh [23] solved the gas diffusivity partial differential 
equation using the combination of the integral method and the method of 
moment to derive a shape factor for gas flow in dual porosity system. 
Accounting for both transient and pseudo steady state fluid exchange between 
matrix and fracture. They presented the following equation for the late time 
dimensionless shape factor: 
 

௭ଶܮ ߪ  ൌ
ସఉఎವభ
ఎವ

ଵ.ଽ଺ସ ௘௫௣ሺఉఒభఎವሻା ସ.଻଺ଷ ௘௫௣ሺఉఒమఎ௧ವሻ

଴.଻ଽ଴ ௘௫௣ሺఉఒభ௧ವሻା଴.ଵସ଼ ௘௫௣ሺఉఒమ௧ವሻ
  

 for    ݐ஽ ൒
ଵ

ଶସఉఎವభ
 (25) 

 
The parameter ߚ is the correction factor that considers the effect of the 
variability of the hydraulic diffusivity with distance. The other parameter ߟ஽ଵ is 
a function of pressure, specific gravity, and temperature. These two unknown 
parameters used as matching parameters. 
     Similar to the flow of slightly compressible fluid, the shape factor 
demonstrate a transient behaviour then converge to a constant value during the 
pseudo-steady state. 
     The average value of the shape factor for compressible gas flow in one set of 
fractures under constant fracture pressure boundary conditions was 8.5/
 . π2/28.5^ߨ
     Their results reveal that the stabilized value of the shape factor for a 
compressible fluid is a weak function of temperature, gas specific gravity, and 
pressure variation.  
     Ranjbar et al. [24] investigated the effect of the fracture pressure depletion on 
the shape factor for single-phase flow of a compressible fluid. Three fracture 
pressure regimes are used. They are constant, linearly declining and 
exponentially declining fracture pressure. They presented two formulas to 
calculate the shape factor for each fracture pressure regime, one for the early 
time (transient) and the second is for the late time. They showed that the shape 
factor values for all the pressure regimes tend to a stable value. These values 
vary between an upper limit of 10.38 for linearly declining fracture pressure and 
a lower limit of 8.57 for constant fracture pressure. 
     The results of the formulas presented by the two pre-mentioned researches 
validated with fine grid numerical simulator.   

4 Conclusions  

1. In spite of all efforts, there is no general formula for the transfer function 
(including the shape factor) which can be considered as a general one. 
2. The shape factors derived based on pseudo steady state flow converges to a 
fixed value after certain time. 
3. The proper formulation of the transfer function and shape factor may be 
selected depending on the reservoir conditions. 
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Nomenclature 

 

English 
   D : Depth from certain datum, L. 
   K : Absolute permeability, mdL2. 
   P : Pressure, F/L2. 
   S  : Phase saturation, fraction. 
   V : Bulk volume of a grid block, L3.           
 
Greek 
   λ : Phase mobility, L2/cp. 
   α : Phase. 
   γ : Specific gravity. 
   ρ : Phase density, M/L3. 
   μ : Phase viscosity, cp. 
   Ø : Porosity, fraction. 
 
Subscript 
   f : Fracture system. 
   g : Gas. 
   m : Matrix system. 
   o : Oil. 
   w : Water. 
   * : Variable in Laplace space.  
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